Telling different unravelings apart via nonlinear quantum-trajectory averages
- URL: http://arxiv.org/abs/2312.03452v4
- Date: Fri, 6 Sep 2024 18:10:05 GMT
- Title: Telling different unravelings apart via nonlinear quantum-trajectory averages
- Authors: Eloy Piñol, Th. K. Mavrogordatos, Dustin Keys, Romain Veyron, Piotr Sierant, Miguel Angel García-March, Samuele Grandi, Morgan W. Mitchell, Jan Wehr, Maciej Lewenstein,
- Abstract summary: The Gorini-Kossakowski-Sudarshan-Lindblad master equation governs the density matrix of open quantum systems.
We propose a method to operationally distinguish unravelings produced by the same ME in different measurement scenarios.
We show that a quantum-trajectory-averaged variance is able to distinguish these measurement scenarios.
- Score: 0.272760415353533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Gorini-Kossakowski-Sudarshan-Lindblad master equation (ME) governs the density matrix of open quantum systems (OQSs). When an OQS is subjected to weak continuous measurement, its state evolves as a stochastic quantum trajectory, whose statistical average solves the ME. The ensemble of such trajectories is termed an unraveling of the ME. We propose a method to operationally distinguish unravelings produced by the same ME in different measurement scenarios, using nonlinear averages of observables over trajectories. We apply the method to the paradigmatic quantum nonlinear system of resonance fluorescence in a two-level atom. We compare the Poisson-type unraveling, induced by direct detection of photons scattered from the two-level emitter, and the Wiener-type unraveling, induced by phase-sensitive detection of the emitted field. We show that a quantum-trajectory-averaged variance is able to distinguish these measurement scenarios. We evaluate the performance of the method, which can be readily extended to more complex OQSs, under a range of realistic experimental conditions.
Related papers
- Reference-frame-independent quantum metrology [0.0]
We present systematic methods for conducting nonlinear quantum metrology in scenarios lacking a common reference frame.
We derive the metrological precision using an error propagation formula based solely on local unitary invariants.
We analyze our results in the context of local decoherence and discuss its influences on the observed scaling.
arXiv Detail & Related papers (2024-10-14T13:59:08Z) - On the non-Markovian quantum control dynamics [2.0552363908639624]
We study open-loop control and closed-loop measurement feedback control of non-Markovian quantum dynamics.
We use the widely studied quantum cavity electrodynamics (cavity-QED) system as an example.
arXiv Detail & Related papers (2024-08-19T01:47:32Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Stochastic approach to evolution of a quantum system interacting with a
wave packet in squeezed number state [0.0]
We determine filtering and master equations for a quantum system interacting with wave packet of light in a continuous-mode squeezed number state.
We formulate the problem of conditional evolution of a quantum system making use of model of repeated interactions and measurements.
arXiv Detail & Related papers (2023-03-21T19:42:15Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Coalescence of non-Markovian dissipation, quantum Zeno effect and
non-Hermitian physics, in a simple realistic quantum system [0.0]
We develop a theoretical framework in terms of the time-dependent Schrodinger equation of motion.
The link between the peaked structure of the effective decay rate of the qubit that interacts indirectly with the environment, and the onset of the quantum Zeno effect is discussed in great detail.
Our treatment and results have revealed an intricate interplay between non-Markovian dynamics, quantum Zeno effect and non-Hermitian physics.
arXiv Detail & Related papers (2022-06-28T09:28:02Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.