論文の概要: Precision of Individual Shapley Value Explanations
- arxiv url: http://arxiv.org/abs/2312.03485v1
- Date: Wed, 6 Dec 2023 13:29:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-07 14:43:25.539984
- Title: Precision of Individual Shapley Value Explanations
- Title(参考訳): シャープリー値の個別説明の精度
- Authors: Lars Henry Berge Olsen
- Abstract要約: 共有値は、複雑な機械学習(ML)モデルによる予測を説明するためのフレームワークとして、説明可能な人工知能(XAI)で広く使用されている。
本研究では, トレーニングデータ分布の外部領域の観測において, 系統的に精度が低いことを示す。
これは統計的観点から予測されるが、我々の知る限りでは、シェープリー価値文学において体系的に扱われていない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shapley values are extensively used in explainable artificial intelligence
(XAI) as a framework to explain predictions made by complex machine learning
(ML) models. In this work, we focus on conditional Shapley values for
predictive models fitted to tabular data and explain the prediction
$f(\boldsymbol{x}^{*})$ for a single observation $\boldsymbol{x}^{*}$ at the
time. Numerous Shapley value estimation methods have been proposed and
empirically compared on an average basis in the XAI literature. However, less
focus has been devoted to analyzing the precision of the Shapley value
explanations on an individual basis. We extend our work in Olsen et al. (2023)
by demonstrating and discussing that the explanations are systematically less
precise for observations on the outer region of the training data distribution
for all used estimation methods. This is expected from a statistical point of
view, but to the best of our knowledge, it has not been systematically
addressed in the Shapley value literature. This is crucial knowledge for
Shapley values practitioners, who should be more careful in applying these
observations' corresponding Shapley value explanations.
- Abstract(参考訳): shapleyの値は、複雑な機械学習(ml)モデルによる予測を説明するフレームワークとして、説明可能な人工知能(xai)で広く使われている。
本研究では,表データに適合する予測モデルに対する条件付きシャプリー値に着目し,単一の観測値である$f(\boldsymbol{x}^{*})$を当時の1つの観測値$\boldsymbol{x}^{*}$に対して説明する。
XAI文献において,多くのシェープ値推定手法が提案され,実証的に比較されている。
しかし、Shapleyの値説明の精度を個別に分析することには、あまり焦点が当てられていない。
我々は,本研究をolsen et al. (2023) で拡張し,すべての使用済み推定法について,トレーニングデータ分布の外領域での観測に対して,その説明が系統的に正確でないことを実証し,議論した。
これは統計的観点から予測されるが、我々の知る限りでは、シェープリー価値文学において体系的に扱われていない。
このことは、シャプリー価値の実践者にとって重要な知識であり、これらの観察のシャプリー価値の説明をより慎重に適用する必要がある。
関連論文リスト
- Improving the Sampling Strategy in KernelSHAP [0.8057006406834466]
KernelSHAPフレームワークは、重み付けされた条件付き期待値のサンプルサブセットを用いて、Shapley値の近似を可能にする。
本稿では,現在最先端戦略における重みの分散を低減するための安定化手法,サンプルサブセットに基づいてShapleyカーネル重みを補正する新しい重み付け方式,および重要なサブセットを包含して修正されたShapleyカーネル重みと統合する簡単な戦略を提案する。
論文 参考訳(メタデータ) (2024-10-07T10:02:31Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
我々は,各入力特徴のシェープ値を直接予測し,追加のモデル評価を行なわずに補正モデルを開発する。
2つのテキスト分類データセットの実験結果から、アモルタイズされたモデルでは、Shapley Valuesを最大60倍のスピードアップで正確に見積もっている。
論文 参考訳(メタデータ) (2023-05-31T16:19:13Z) - SHAP-XRT: The Shapley Value Meets Conditional Independence Testing [21.794110108580746]
そこで本研究では,Shapleyに基づく説明手法と条件付き独立性テストが密接に関連していることを示す。
本研究では,条件付きランダム化テスト(CRT, Conditional Randomization Test)にインスパイアされたテスト手法であるSHAPley Explanation Randomization Test(SHAP-XRT)を紹介した。
我々は、Shapley値自体が大域(つまり全体)のnull仮説の期待$p$-値に上限を与えることを示した。
論文 参考訳(メタデータ) (2022-07-14T16:28:54Z) - Accurate Shapley Values for explaining tree-based models [0.0]
木構造を効率的に利用し,最先端の手法よりも精度の高い2つのシェープ値推定器を導入する。
これらのメソッドはPythonパッケージとして利用できる。
論文 参考訳(メタデータ) (2021-06-07T17:35:54Z) - Fast Hierarchical Games for Image Explanations [78.16853337149871]
本稿では,シェープリー係数の階層的拡張に基づく画像分類のモデル非依存な説明法を提案する。
他のShapleyベースの説明手法とは異なり、h-Shapはスケーラブルで近似を必要とせずに計算できる。
本手法は,合成データセット,医用画像シナリオ,一般コンピュータビジョン問題において,一般的なシャプリーベースおよび非サプリーベース手法と比較した。
論文 参考訳(メタデータ) (2021-04-13T13:11:02Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual
Predictions of Complex Models [6.423239719448169]
シェープ値は、モデルの予測と平均ベースラインの差をモデルへの入力として使用する異なる特徴に関連付けるように設計されている。
これらの「因果」シャプリー値が、それらの望ましい性質を犠牲にすることなく、一般因果グラフに対してどのように導出できるかを示す。
論文 参考訳(メタデータ) (2020-11-03T11:11:36Z) - The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
Sufficient Subsets [61.66584140190247]
機能に基づく説明は、自明なモデルでも問題を引き起こすことを示す。
そこで本研究では,2つの一般的な説明書クラスであるシェープリー説明書と十分最小限の部分集合説明書が,基本的に異なる基底的説明書のタイプをターゲットにしていることを示す。
論文 参考訳(メタデータ) (2020-09-23T09:45:23Z) - Predictive and Causal Implications of using Shapley Value for Model
Interpretation [6.744385328015561]
我々は、予測モデルと因果モデルの両方において重要な概念である、シェープ価値と条件独立の関係を確立した。
その結果,モデルから高いShapley値を持つ変数を排除しても必ずしも予測性能を損なうとは限らないことが示唆された。
さらに重要なことに、変数のShapley値は、関心の対象との因果関係を反映しない。
論文 参考訳(メタデータ) (2020-08-12T01:08:08Z) - Towards Efficient Data Valuation Based on the Shapley Value [65.4167993220998]
本稿では,Shapley値を用いたデータ評価の問題点について検討する。
Shapleyの値は、データ値の概念に対して多くのデシダータを満たすユニークなペイオフスキームを定義する。
本稿では,Shapley値を近似する効率的なアルゴリズムのレパートリーを提案する。
論文 参考訳(メタデータ) (2019-02-27T00:22:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。