Defense Against Adversarial Attacks using Convolutional Auto-Encoders
- URL: http://arxiv.org/abs/2312.03520v1
- Date: Wed, 6 Dec 2023 14:29:16 GMT
- Title: Defense Against Adversarial Attacks using Convolutional Auto-Encoders
- Authors: Shreyasi Mandal
- Abstract summary: Adversarial attacks manipulate the input data with imperceptible perturbations, causing the model to misclassify the data or produce erroneous outputs.
This work is based on enhancing the robustness of targeted models against adversarial attacks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models, while achieving state-of-the-art performance on many
tasks, are susceptible to adversarial attacks that exploit inherent
vulnerabilities in their architectures. Adversarial attacks manipulate the
input data with imperceptible perturbations, causing the model to misclassify
the data or produce erroneous outputs. This work is based on enhancing the
robustness of targeted classifier models against adversarial attacks. To
achieve this, an convolutional autoencoder-based approach is employed that
effectively counters adversarial perturbations introduced to the input images.
By generating images closely resembling the input images, the proposed
methodology aims to restore the model's accuracy.
Related papers
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
We propose a proactive and sustainable deepfake training augmentation solution.
We employ a pool of autoencoders that mimic the effect of the artefacts introduced by the deepfake generator models.
Experiments reveal that our proposed ensemble autoencoder-based data augmentation learning approach offers improvements in terms of generalisation.
arXiv Detail & Related papers (2024-03-29T19:09:08Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) are used to test the robustness of trained neural networks by distorting input data.
We introduce a self-supervised, computationally economical method for generating adversarial examples.
Our experiments consistently demonstrate the method is effective across various models, unseen data categories, and even defended models.
arXiv Detail & Related papers (2023-10-05T17:34:47Z) - Counterfactual Image Generation for adversarially robust and
interpretable Classifiers [1.3859669037499769]
We propose a unified framework leveraging image-to-image translation Generative Adrial Networks (GANs) to produce counterfactual samples.
This is achieved by combining the classifier and discriminator into a single model that attributes real images to their respective classes and flags generated images as "fake"
We show how the model exhibits improved robustness to adversarial attacks, and we show how the discriminator's "fakeness" value serves as an uncertainty measure of the predictions.
arXiv Detail & Related papers (2023-10-01T18:50:29Z) - Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face
Recognition [111.1952945740271]
Adversarial Attributes (Adv-Attribute) is designed to generate inconspicuous and transferable attacks on face recognition.
Experiments on the FFHQ and CelebA-HQ datasets show that the proposed Adv-Attribute method achieves the state-of-the-art attacking success rates.
arXiv Detail & Related papers (2022-10-13T09:56:36Z) - CARBEN: Composite Adversarial Robustness Benchmark [70.05004034081377]
This paper demonstrates how composite adversarial attack (CAA) affects the resulting image.
It provides real-time inferences of different models, which will facilitate users' configuration of the parameters of the attack level.
A leaderboard to benchmark adversarial robustness against CAA is also introduced.
arXiv Detail & Related papers (2022-07-16T01:08:44Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
In particular, our layer generates an input perturbation in the opposite direction of the adversarial one.
We verify the effectiveness of our approach by combining our layer with both nominally and robustly trained models.
Our anti-adversary layer significantly enhances model robustness while coming at no cost on clean accuracy.
arXiv Detail & Related papers (2021-03-26T09:36:59Z) - Stylized Adversarial Defense [105.88250594033053]
adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
We propose to exploit additional information from the feature space to craft stronger adversaries.
Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses.
arXiv Detail & Related papers (2020-07-29T08:38:10Z) - GAP++: Learning to generate target-conditioned adversarial examples [28.894143619182426]
Adversarial examples are perturbed inputs which can cause a serious threat for machine learning models.
We propose a more general-purpose framework which infers target-conditioned perturbations dependent on both input image and target label.
Our method achieves superior performance with single target attack models and obtains high fooling rates with small perturbation norms.
arXiv Detail & Related papers (2020-06-09T07:49:49Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
We present a new approach to improve the robustness of a model against black-box transfer attacks.
A removable additional neural network is included in the target model, and is designed to induce the textitluring effect.
Our deception-based method only needs to have access to the predictions of the target model and does not require a labeled data set.
arXiv Detail & Related papers (2020-04-10T06:48:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.