Transformer-Powered Surrogates Close the ICF Simulation-Experiment Gap with Extremely Limited Data
- URL: http://arxiv.org/abs/2312.03642v2
- Date: Tue, 28 May 2024 05:22:53 GMT
- Title: Transformer-Powered Surrogates Close the ICF Simulation-Experiment Gap with Extremely Limited Data
- Authors: Matthew L. Olson, Shusen Liu, Jayaraman J. Thiagarajan, Bogdan Kustowski, Weng-Keen Wong, Rushil Anirudh,
- Abstract summary: This paper presents a novel transformer-powered approach for enhancing prediction accuracy in multi-modal output scenarios.
The proposed approach integrates transformer-based architecture with a novel graph-based hyper- parameter optimization technique.
We demonstrate the efficacy of our approach on inertial confinement fusion experiments, where only 10 shots of real-world data are available.
- Score: 24.24053233941972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in machine learning, specifically transformer architecture, have led to significant advancements in commercial domains. These powerful models have demonstrated superior capability to learn complex relationships and often generalize better to new data and problems. This paper presents a novel transformer-powered approach for enhancing prediction accuracy in multi-modal output scenarios, where sparse experimental data is supplemented with simulation data. The proposed approach integrates transformer-based architecture with a novel graph-based hyper-parameter optimization technique. The resulting system not only effectively reduces simulation bias, but also achieves superior prediction accuracy compared to the prior method. We demonstrate the efficacy of our approach on inertial confinement fusion experiments, where only 10 shots of real-world data are available, as well as synthetic versions of these experiments.
Related papers
- Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization [88.5582111768376]
We study the optimization of a Transformer composed of a self-attention layer with softmax followed by a fully connected layer under gradient descent on a certain data distribution model.
Our results establish a sharp condition that can distinguish between the small test error phase and the large test error regime, based on the signal-to-noise ratio in the data model.
arXiv Detail & Related papers (2024-09-28T13:24:11Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Simulation-Enhanced Data Augmentation for Machine Learning Pathloss
Prediction [9.664420734674088]
This paper introduces a novel simulation-enhanced data augmentation method for machine learning pathloss prediction.
Our method integrates synthetic data generated from a cellular coverage simulator and independently collected real-world datasets.
The integration of synthetic data significantly improves the generalizability of the model in different environments.
arXiv Detail & Related papers (2024-02-03T00:38:08Z) - Enhancing Multi-Objective Optimization through Machine Learning-Supported Multiphysics Simulation [1.6685829157403116]
This paper presents a methodological framework for training, self-optimising, and self-organising surrogate models.
We show that surrogate models can be trained on relatively small amounts of data to approximate the underlying simulations accurately.
arXiv Detail & Related papers (2023-09-22T20:52:50Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
We propose two data augmentation methods customized for tracking.
First, we optimize existing random cropping via a dynamic search radius mechanism and simulation for boundary samples.
Second, we propose a token-level feature mixing augmentation strategy, which enables the model against challenges like background interference.
arXiv Detail & Related papers (2023-09-15T09:18:54Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Transfer learning driven design optimization for inertial confinement
fusion [0.0]
Transfer learning is a promising approach to creating predictive models that incorporate simulation and experimental data into a common framework.
We demonstrate that this method is more efficient at optimizing designs than traditional model calibration techniques.
arXiv Detail & Related papers (2022-05-26T17:38:57Z) - Transfer learning suppresses simulation bias in predictive models built
from sparse, multi-modal data [15.587831925516957]
Many problems in science, engineering, and business require making predictions based on very few observations.
To build a robust predictive model, these sparse data may need to be augmented with simulated data, especially when the design space is multidimensional.
We combine recent developments in deep learning to build more robust predictive models from multimodal data.
arXiv Detail & Related papers (2021-04-19T23:28:32Z) - Cognitive simulation models for inertial confinement fusion: Combining
simulation and experimental data [0.0]
Researchers rely heavily on computer simulations to explore the design space in search of high-performing implosions.
For more effective design and investigation, simulations require input from past experimental data to better predict future performance.
We describe a cognitive simulation method for combining simulation and experimental data into a common, predictive model.
arXiv Detail & Related papers (2021-03-19T02:00:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.