Interpretability Illusions in the Generalization of Simplified Models
- URL: http://arxiv.org/abs/2312.03656v2
- Date: Wed, 5 Jun 2024 15:03:37 GMT
- Title: Interpretability Illusions in the Generalization of Simplified Models
- Authors: Dan Friedman, Andrew Lampinen, Lucas Dixon, Danqi Chen, Asma Ghandeharioun,
- Abstract summary: A common method to study deep learning systems is to use simplified model representations.
This approach assumes that the results of these simplifications are faithful to the original model.
We show that even if the simplified representations can accurately approximate the full model on the training set, they may fail to accurately capture the model's behavior out of distribution.
- Score: 30.124082589662574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A common method to study deep learning systems is to use simplified model representations--for example, using singular value decomposition to visualize the model's hidden states in a lower dimensional space. This approach assumes that the results of these simplifications are faithful to the original model. Here, we illustrate an important caveat to this assumption: even if the simplified representations can accurately approximate the full model on the training set, they may fail to accurately capture the model's behavior out of distribution. We illustrate this by training Transformer models on controlled datasets with systematic generalization splits, including the Dyck balanced-parenthesis languages and a code completion task. We simplify these models using tools like dimensionality reduction and clustering, and then explicitly test how these simplified proxies match the behavior of the original model. We find consistent generalization gaps: cases in which the simplified proxies are more faithful to the original model on the in-distribution evaluations and less faithful on various tests of systematic generalization. This includes cases where the original model generalizes systematically but the simplified proxies fail, and cases where the simplified proxies generalize better. Together, our results raise questions about the extent to which mechanistic interpretations derived using tools like SVD can reliably predict what a model will do in novel situations.
Related papers
- Principled Out-of-Distribution Generalization via Simplicity [16.17883058788714]
We study the compositional generalization abilities of diffusion models in image generation.<n>We develop a theoretical framework for OOD generalization via simplicity, quantified using a predefined simplicity metric.<n>We establish the first sharp sample complexity guarantees for learning the true, generalizable, simple model.
arXiv Detail & Related papers (2025-05-28T17:44:10Z) - Predicting the Performance of Black-box LLMs through Self-Queries [60.87193950962585]
Large language models (LLMs) are increasingly relied on in AI systems, predicting when they make mistakes is crucial.
In this paper, we extract features of LLMs in a black-box manner by using follow-up prompts and taking the probabilities of different responses as representations.
We demonstrate that training a linear model on these low-dimensional representations produces reliable predictors of model performance at the instance level.
arXiv Detail & Related papers (2025-01-02T22:26:54Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Consistent Counterfactuals for Deep Models [25.1271020453651]
Counterfactual examples are used to explain predictions of machine learning models in key areas such as finance and medical diagnosis.
This paper studies the consistency of model prediction on counterfactual examples in deep networks under small changes to initial training conditions.
arXiv Detail & Related papers (2021-10-06T23:48:55Z) - Predicting Unreliable Predictions by Shattering a Neural Network [145.3823991041987]
Piecewise linear neural networks can be split into subfunctions.
Subfunctions have their own activation pattern, domain, and empirical error.
Empirical error for the full network can be written as an expectation over subfunctions.
arXiv Detail & Related papers (2021-06-15T18:34:41Z) - Generalization and Memorization: The Bias Potential Model [9.975163460952045]
generative models and density estimators behave quite differently from models for learning functions.
For the bias potential model, we show that dimension-independent generalization accuracy is achievable if early stopping is adopted.
In the long term, the model either memorizes the samples or diverges.
arXiv Detail & Related papers (2020-11-29T04:04:54Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.