論文の概要: PROMISE: A Framework for Model-Driven Stateful Prompt Orchestration
- arxiv url: http://arxiv.org/abs/2312.03699v1
- Date: Wed, 6 Dec 2023 18:59:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-07 13:48:44.032061
- Title: PROMISE: A Framework for Model-Driven Stateful Prompt Orchestration
- Title(参考訳): promise: モデル駆動ステートフルプロンプトオーケストレーションのためのフレームワーク
- Authors: Wenyuan Wu, Jasmin Heierli, Max Meisterhans, Adrian Moser, Andri
F\"arber, Mateusz Dolata, Elena Gavagnin, Alexandre de Spindler, and Gerhard
Schwabe
- Abstract要約: 本稿では,情報システムとの複雑な言語によるインタラクションを開発するためのフレームワークであるPROMISEを提案する。
ステートマシンモデリングの概念を使用することで、階層的にネストされた状態と遷移をまたいだモデル駆動の動的プロンプトオーケストレーションが可能になる。
本稿では、健康情報システムにおけるアプリケーションシナリオの文脈におけるPROMISEの利点を示し、複雑なインタラクションを扱う能力を示す。
- 参考スコア(独自算出の注目度): 33.7054351451505
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The advent of increasingly powerful language models has raised expectations
for language-based interactions. However, controlling these models is a
challenge, emphasizing the need to be able to investigate the feasibility and
value of their application. We present PROMISE, a framework that facilitates
the development of complex language-based interactions with information
systems. Its use of state machine modeling concepts enables model-driven,
dynamic prompt orchestration across hierarchically nested states and
transitions. This improves the control of the behavior of language models and
thus enables their effective and efficient use. We show the benefits of PROMISE
in the context of application scenarios within health information systems and
demonstrate its ability to handle complex interactions.
- Abstract(参考訳): ますます強力な言語モデルの出現は、言語ベースの相互作用に対する期待を高めた。
しかし、これらのモデルを制御することは困難であり、アプリケーションの実現可能性と価値を調査できる必要性を強調している。
本稿では,情報システムとの複雑な言語によるインタラクションを開発するためのフレームワークであるPROMISEを提案する。
ステートマシンモデリングの概念を使用することで、階層的にネストされた状態と遷移にわたるモデル駆動の動的プロンプトオーケストレーションが可能になる。
これにより、言語モデルの動作制御が改善され、効果的で効率的な使用が可能になる。
本稿では、健康情報システムにおけるアプリケーションシナリオの文脈におけるPROMISEの利点を示し、複雑なインタラクションを扱う能力を示す。
関連論文リスト
- LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - A Framework to Model ML Engineering Processes [1.9744907811058787]
機械学習(ML)ベースのシステムの開発は複雑で、多様なスキルセットを持つ複数の学際的なチームが必要である。
現在のプロセスモデリング言語は、そのようなシステムの開発を説明するには適していない。
ドメイン固有言語を中心に構築されたMLベースのソフトウェア開発プロセスのモデリングフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-04-29T09:17:36Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - Large Language User Interfaces: Voice Interactive User Interfaces powered by LLMs [5.06113628525842]
ユーザとユーザインターフェース(UI)の仲介として機能するフレームワークを提案する。
アノテーションの形でUIコンポーネントのテキストセマンティックマッピングに立つシステムを採用している。
我々のエンジンは、最も適切なアプリケーションを分類し、関連するパラメータを抽出し、その後、ユーザの期待するアクションの正確な予測を実行することができる。
論文 参考訳(メタデータ) (2024-02-07T21:08:49Z) - MEIA: Multimodal Embodied Perception and Interaction in Unknown Environments [82.67236400004826]
本稿では,自然言語で表現されたハイレベルなタスクを実行可能なアクションのシーケンスに変換するための,MEIA(Multimodal Embodied Interactive Agent)を提案する。
MEMモジュールは、多様な要件とロボットの能力に基づいて、MEIAが実行可能なアクションプランを生成することを可能にする。
論文 参考訳(メタデータ) (2024-02-01T02:43:20Z) - Prompt-to-OS (P2OS): Revolutionizing Operating Systems and
Human-Computer Interaction with Integrated AI Generative Models [10.892991111926573]
本稿では,従来のオペレーティングシステムの概念に革命をもたらす,人間とコンピュータのインタラクションのためのパラダイムを提案する。
この革新的なフレームワークでは、マシンに発行されるユーザリクエストは、生成AIモデルの相互接続エコシステムによって処理される。
このビジョンの概念は、プライバシ、セキュリティ、信頼性、生成モデルの倫理的利用など、重要な課題を提起する。
論文 参考訳(メタデータ) (2023-10-07T17:16:34Z) - 'What are you referring to?' Evaluating the Ability of Multi-Modal
Dialogue Models to Process Clarificational Exchanges [65.03196674816772]
参照表現が宛先に対して意図された参照を一意に識別しない場合、参照の曖昧さが対話で生じる。
出席者は、通常、そのような曖昧さをすぐに検知し、メタコミュニケーション、明確化取引所(CE: Meta-communicative, Clarification Exchanges)を使用して、話者と作業する。
ここでは、CRを生成・応答する能力は、マルチモーダルな視覚的基盤を持つ対話モデルのアーキテクチャと目的関数に特定の制約を課していると論じる。
論文 参考訳(メタデータ) (2023-07-28T13:44:33Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - Decoupled Context Processing for Context Augmented Language Modeling [33.89636308731306]
言語モデルはコンテキストレトリバーで拡張することができ、大きな外部データベースからの知識を組み込むことができる。
検索したコンテキストを活用することで、ニューラルネットワークは内部パラメータ内の膨大な世界の知識を記憶する必要がなく、効率性、解釈可能性、モジュール性が向上する。
論文 参考訳(メタデータ) (2022-10-11T20:05:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。