論文の概要: Comparative Analysis of Multilingual Text Classification &
Identification through Deep Learning and Embedding Visualization
- arxiv url: http://arxiv.org/abs/2312.03789v1
- Date: Wed, 6 Dec 2023 12:03:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 17:25:57.476273
- Title: Comparative Analysis of Multilingual Text Classification &
Identification through Deep Learning and Embedding Visualization
- Title(参考訳): 深層学習と埋め込み可視化による多言語テキスト分類と識別の比較分析
- Authors: Arinjay Wyawhare
- Abstract要約: この研究では、17の言語を含むデータセットにLangDetect、LangId、FastText、Sentence Transformerを採用している。
FastText多層パーセプトロンモデルは、精度、精度、リコール、F1スコアを達成し、Sentence Transformerモデルを上回った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This research conducts a comparative study on multilingual text
classification methods, utilizing deep learning and embedding visualization.
The study employs LangDetect, LangId, FastText, and Sentence Transformer on a
dataset encompassing 17 languages. It explores dimensionality's impact on
clustering, revealing FastText's clearer clustering in 2D visualization due to
its extensive multilingual corpus training. Notably, the FastText multi-layer
perceptron model achieved remarkable accuracy, precision, recall, and F1 score,
outperforming the Sentence Transformer model. The study underscores the
effectiveness of these techniques in multilingual text classification,
emphasizing the importance of large multilingual corpora for training
embeddings. It lays the groundwork for future research and assists
practitioners in developing language detection and classification systems.
Additionally, it includes the comparison of multi-layer perceptron, LSTM, and
Convolution models for classification.
- Abstract(参考訳): 本研究では,ディープラーニングと埋め込み可視化を利用して,多言語テキスト分類法の比較研究を行う。
この研究では、17の言語を含むデータセットにLangDetect、LangId、FastText、Sentence Transformerを採用している。
次元がクラスタリングに与える影響を探求し、fasttextの2d視覚化におけるより明確なクラスタリングを明らかにする。
特に、FastTextのマルチ層パーセプトロンモデルは、精度、精度、リコール、F1スコアを達成し、Sentence Transformerモデルを上回った。
本研究は,多言語テキスト分類におけるこれらの手法の有効性を強調し,埋め込み学習における多言語コーパスの重要性を強調した。
将来の研究の基盤を築き、言語検出と分類システムを開発する実践者を支援する。
さらに、多層パーセプトロン、LSTM、および分類のための畳み込みモデルの比較を含む。
関連論文リスト
- Comparison between parameter-efficient techniques and full fine-tuning: A case study on multilingual news article classification [4.498100922387482]
Adapters and Low-Rank Adaptation (LoRA)は、言語モデルのトレーニングをより効率的にするために設計されたパラメータ効率の良い微調整技術である。
過去の結果は,これらの手法がいくつかの分類タスクの性能を向上させることさえできることを示した。
本稿では,これらの手法が完全微調整と比較して分類性能と計算コストに与える影響について検討する。
論文 参考訳(メタデータ) (2023-08-14T17:12:43Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
本研究は,統計的,ニューラルベース,トランスフォーマーベースの機械学習手法に基づく形式性検出手法の体系的研究を初めて行う。
単言語,多言語,言語横断の3種類の実験を行った。
本研究は,モノリンガルおよび多言語形式分類タスクのためのトランスフォーマーベースモデルに対するChar BiLSTMモデルの克服を示す。
論文 参考訳(メタデータ) (2022-04-19T16:23:07Z) - On Cross-Lingual Retrieval with Multilingual Text Encoders [51.60862829942932]
言語間文書・文検索タスクにおける最先端多言語エンコーダの適合性について検討する。
教師なしのアドホック文と文書レベルのCLIR実験でそれらの性能をベンチマークする。
我々は、ゼロショット言語とドメイン転送CLIR実験のシリーズにおける英語関連データに基づいて、教師付き方式で微調整された多言語エンコーダの評価を行った。
論文 参考訳(メタデータ) (2021-12-21T08:10:27Z) - To Augment or Not to Augment? A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP [0.0]
本稿では,構文の変更を行うテキスト拡張手法の3つのカテゴリについて検討する。
音声のタグ付けや依存性解析,セマンティックロールのラベル付けなどにおいて,多種多様な言語ファミリに対して比較を行った。
以上の結果から,mBERTに基づくベースラインの強化により,より高機能化が可能であることが示唆された。
論文 参考訳(メタデータ) (2021-11-18T10:52:48Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z) - Cross-lingual Text Classification with Heterogeneous Graph Neural
Network [2.6936806968297913]
言語間テキスト分類は、ソース言語上の分類器を訓練し、その知識を対象言語に伝達することを目的としている。
近年の多言語事前学習言語モデル (mPLM) は言語間分類タスクにおいて顕著な結果をもたらす。
言語間テキスト分類のための言語内および言語間における異種情報を統合するための,単純かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2021-05-24T12:45:42Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z) - From text saliency to linguistic objects: learning linguistic
interpretable markers with a multi-channels convolutional architecture [2.064612766965483]
本稿では,分類プロセスを利用したテキストから解釈可能な言語オブジェクトを抽出するために,実装されたCNNの隠れ層を検査する手法を提案する。
我々は、英語とフランス語の2つの異なる言語からのコーパスに対するアプローチの効率を実証的に実証した。
論文 参考訳(メタデータ) (2020-04-07T10:46:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。