AnimatableDreamer: Text-Guided Non-rigid 3D Model Generation and Reconstruction with Canonical Score Distillation
- URL: http://arxiv.org/abs/2312.03795v3
- Date: Thu, 28 Mar 2024 09:40:08 GMT
- Title: AnimatableDreamer: Text-Guided Non-rigid 3D Model Generation and Reconstruction with Canonical Score Distillation
- Authors: Xinzhou Wang, Yikai Wang, Junliang Ye, Zhengyi Wang, Fuchun Sun, Pengkun Liu, Ling Wang, Kai Sun, Xintong Wang, Bin He,
- Abstract summary: We propose a text-to-4D generation framework capable of generating diverse categories of non-rigid objects on skeletons extracted from a monocular video.
AnimatableDreamer is equipped with our novel optimization design dubbed Canonical Score Distillation (CSD), which lifts 2D diffusion for temporal consistent 4D generation.
- Score: 23.967728238723772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in 3D generation have facilitated sequential 3D model generation (a.k.a 4D generation), yet its application for animatable objects with large motion remains scarce. Our work proposes AnimatableDreamer, a text-to-4D generation framework capable of generating diverse categories of non-rigid objects on skeletons extracted from a monocular video. At its core, AnimatableDreamer is equipped with our novel optimization design dubbed Canonical Score Distillation (CSD), which lifts 2D diffusion for temporal consistent 4D generation. CSD, designed from a score gradient perspective, generates a canonical model with warp-robustness across different articulations. Notably, it also enhances the authenticity of bones and skinning by integrating inductive priors from a diffusion model. Furthermore, with multi-view distillation, CSD infers invisible regions, thereby improving the fidelity of monocular non-rigid reconstruction. Extensive experiments demonstrate the capability of our method in generating high-flexibility text-guided 3D models from the monocular video, while also showing improved reconstruction performance over existing non-rigid reconstruction methods.
Related papers
- AR4D: Autoregressive 4D Generation from Monocular Videos [27.61057927559143]
Existing approaches primarily rely on Score Distillation Sampling to infer novel-view videos.
We propose AR4D, a novel paradigm for SDS-free 4D generation.
We show that AR4D can achieve state-of-the-art 4D generation without SDS, delivering greater diversity, improved spatial-temporal consistency, and better alignment with input prompts.
arXiv Detail & Related papers (2025-01-03T09:27:36Z) - Taming Feed-forward Reconstruction Models as Latent Encoders for 3D Generative Models [7.485139478358133]
Recent AI-based 3D content creation has largely evolved along two paths: feed-forward image-to-3D reconstruction approaches and 3D generative models trained with 2D or 3D supervision.
We show that existing feed-forward reconstruction methods can serve as effective latent encoders for training 3D generative models, thereby bridging these two paradigms.
arXiv Detail & Related papers (2024-12-31T21:23:08Z) - SV4D: Dynamic 3D Content Generation with Multi-Frame and Multi-View Consistency [37.96042037188354]
We present Stable Video 4D (SV4D), a latent video diffusion model for multi-frame and multi-view consistent dynamic 3D content generation.
arXiv Detail & Related papers (2024-07-24T17:59:43Z) - 4Dynamic: Text-to-4D Generation with Hybrid Priors [56.918589589853184]
We propose a novel method for text-to-4D generation, which ensures the dynamic amplitude and authenticity through direct supervision provided by a video prior.
Our method not only supports text-to-4D generation but also enables 4D generation from monocular videos.
arXiv Detail & Related papers (2024-07-17T16:02:55Z) - EG4D: Explicit Generation of 4D Object without Score Distillation [105.63506584772331]
DG4D is a novel framework that generates high-quality and consistent 4D assets without score distillation.
Our framework outperforms the baselines in generation quality by a considerable margin.
arXiv Detail & Related papers (2024-05-28T12:47:22Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
We present a novel framework, textbfDiffusion4D, for efficient and scalable 4D content generation.
We develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets.
Our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency.
arXiv Detail & Related papers (2024-05-26T17:47:34Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
We propose an efficient, sparse-controlled video-to-4D framework named SC4D that decouples motion and appearance.
Our method surpasses existing methods in both quality and efficiency.
We devise a novel application that seamlessly transfers motion onto a diverse array of 4D entities.
arXiv Detail & Related papers (2024-04-04T18:05:18Z) - Diffusion$^2$: Dynamic 3D Content Generation via Score Composition of Video and Multi-view Diffusion Models [6.738732514502613]
Diffusion$2$ is a novel framework for dynamic 3D content creation.
It reconciles the knowledge about geometric consistency and temporal smoothness from 3D models to directly sample dense multi-view images.
Experiments demonstrate the efficacy of our proposed framework in generating highly seamless and consistent 4D assets.
arXiv Detail & Related papers (2024-04-02T17:58:03Z) - STAG4D: Spatial-Temporal Anchored Generative 4D Gaussians [36.83603109001298]
STAG4D is a novel framework that combines pre-trained diffusion models with dynamic 3D Gaussian splatting for high-fidelity 4D generation.
We show that our method outperforms prior 4D generation works in rendering quality, spatial-temporal consistency, and generation robustness.
arXiv Detail & Related papers (2024-03-22T04:16:33Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
This paper introduces a novel framework called LN3Diff to address a unified 3D diffusion pipeline.
Our approach harnesses a 3D-aware architecture and variational autoencoder to encode the input image into a structured, compact, and 3D latent space.
It achieves state-of-the-art performance on ShapeNet for 3D generation and demonstrates superior performance in monocular 3D reconstruction and conditional 3D generation.
arXiv Detail & Related papers (2024-03-18T17:54:34Z) - UniDream: Unifying Diffusion Priors for Relightable Text-to-3D Generation [101.2317840114147]
We present UniDream, a text-to-3D generation framework by incorporating unified diffusion priors.
Our approach consists of three main components: (1) a dual-phase training process to get albedo-normal aligned multi-view diffusion and reconstruction models, (2) a progressive generation procedure for geometry and albedo-textures based on Score Distillation Sample (SDS) using the trained reconstruction and diffusion models, and (3) an innovative application of SDS for finalizing PBR generation while keeping a fixed albedo based on Stable Diffusion model.
arXiv Detail & Related papers (2023-12-14T09:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.