Taming Feed-forward Reconstruction Models as Latent Encoders for 3D Generative Models
- URL: http://arxiv.org/abs/2501.00651v2
- Date: Sat, 04 Jan 2025 08:27:57 GMT
- Title: Taming Feed-forward Reconstruction Models as Latent Encoders for 3D Generative Models
- Authors: Suttisak Wizadwongsa, Jinfan Zhou, Edward Li, Jeong Joon Park,
- Abstract summary: Recent AI-based 3D content creation has largely evolved along two paths: feed-forward image-to-3D reconstruction approaches and 3D generative models trained with 2D or 3D supervision.
We show that existing feed-forward reconstruction methods can serve as effective latent encoders for training 3D generative models, thereby bridging these two paradigms.
- Score: 7.485139478358133
- License:
- Abstract: Recent AI-based 3D content creation has largely evolved along two paths: feed-forward image-to-3D reconstruction approaches and 3D generative models trained with 2D or 3D supervision. In this work, we show that existing feed-forward reconstruction methods can serve as effective latent encoders for training 3D generative models, thereby bridging these two paradigms. By reusing powerful pre-trained reconstruction models, we avoid computationally expensive encoder network training and obtain rich 3D latent features for generative modeling for free. However, the latent spaces of reconstruction models are not well-suited for generative modeling due to their unstructured nature. To enable flow-based model training on these latent features, we develop post-processing pipelines, including protocols to standardize the features and spatial weighting to concentrate on important regions. We further incorporate a 2D image space perceptual rendering loss to handle the high-dimensional latent spaces. Finally, we propose a multi-stream transformer-based rectified flow architecture to achieve linear scaling and high-quality text-conditioned 3D generation. Our framework leverages the advancements of feed-forward reconstruction models to enhance the scalability of 3D generative modeling, achieving both high computational efficiency and state-of-the-art performance in text-to-3D generation.
Related papers
- TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models [69.0220314849478]
TripoSG is a new paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images.
The resulting 3D shapes exhibit en- hanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input im- ages.
To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
arXiv Detail & Related papers (2025-02-10T16:07:54Z) - DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models [67.50989119438508]
We introduce DSplats, a novel method that directly denoises multiview images using Gaussian-based Reconstructors to produce realistic 3D assets.
Our experiments demonstrate that DSplats not only produces high-quality, spatially consistent outputs, but also sets a new standard in single-image to 3D reconstruction.
arXiv Detail & Related papers (2024-12-11T07:32:17Z) - 3DTopia-XL: Scaling High-quality 3D Asset Generation via Primitive Diffusion [86.25111098482537]
We introduce 3DTopia-XL, a scalable native 3D generative model designed to overcome limitations of existing methods.
3DTopia-XL leverages a novel primitive-based 3D representation, PrimX, which encodes detailed shape, albedo, and material field into a compact tensorial format.
On top of the novel representation, we propose a generative framework based on Diffusion Transformer (DiT), which comprises 1) Primitive Patch Compression, 2) and Latent Primitive Diffusion.
We conduct extensive qualitative and quantitative experiments to demonstrate that 3DTopia-XL significantly outperforms existing methods in generating high-
arXiv Detail & Related papers (2024-09-19T17:59:06Z) - 3D Face Reconstruction Using A Spectral-Based Graph Convolution Encoder [3.749406324648861]
We propose an innovative approach that integrates existing 2D features with 3D features to guide the model learning process.
Our model is trained using 2D-3D data pairs from a combination of datasets and achieves state-of-the-art performance on the NoW benchmark.
arXiv Detail & Related papers (2024-03-08T11:09:46Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space.
We extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously.
arXiv Detail & Related papers (2024-02-19T15:33:09Z) - Pushing the Limits of 3D Shape Generation at Scale [65.24420181727615]
We present a significant breakthrough in 3D shape generation by scaling it to unprecedented dimensions.
We have developed a model with an astounding 3.6 billion trainable parameters, establishing it as the largest 3D shape generation model to date, named Argus-3D.
arXiv Detail & Related papers (2023-06-20T13:01:19Z) - Learning Versatile 3D Shape Generation with Improved AR Models [91.87115744375052]
Auto-regressive (AR) models have achieved impressive results in 2D image generation by modeling joint distributions in the grid space.
We propose the Improved Auto-regressive Model (ImAM) for 3D shape generation, which applies discrete representation learning based on a latent vector instead of volumetric grids.
arXiv Detail & Related papers (2023-03-26T12:03:18Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
We present an efficient diffusion-based model for 3D-aware generation of neural fields.
Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields.
We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
arXiv Detail & Related papers (2022-11-30T01:55:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.