High Pileup Particle Tracking with Object Condensation
- URL: http://arxiv.org/abs/2312.03823v1
- Date: Wed, 6 Dec 2023 19:00:00 GMT
- Title: High Pileup Particle Tracking with Object Condensation
- Authors: Kilian Lieret, Gage DeZoort, Devdoot Chatterjee, Jian Park, Siqi Miao,
Pan Li
- Abstract summary: Recent work has demonstrated that graph neural networks (GNNs) can match the performance of traditional algorithms for charged particle tracking.
We consider an alternative based on object condensation (OC), a multi-objective learning framework designed to cluster points (hits) belonging to an arbitrary number of objects (tracks) and regress the properties of each object.
- Score: 7.962871190916326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has demonstrated that graph neural networks (GNNs) can match the
performance of traditional algorithms for charged particle tracking while
improving scalability to meet the computing challenges posed by the HL-LHC.
Most GNN tracking algorithms are based on edge classification and identify
tracks as connected components from an initial graph containing spurious
connections. In this talk, we consider an alternative based on object
condensation (OC), a multi-objective learning framework designed to cluster
points (hits) belonging to an arbitrary number of objects (tracks) and regress
the properties of each object. Building on our previous results, we present a
streamlined model and show progress toward a one-shot OC tracking algorithm in
a high-pileup environment.
Related papers
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
Composite Node Message Passing Network (CoNo-Link) is a framework for modeling ultra-long frames information for association.
In addition to the previous method of treating objects as nodes, the network innovatively treats object trajectories as nodes for information interaction.
Our model can learn better predictions on longer-time scales by adding composite nodes.
arXiv Detail & Related papers (2023-12-14T14:00:30Z) - UnsMOT: Unified Framework for Unsupervised Multi-Object Tracking with
Geometric Topology Guidance [6.577227592760559]
UnsMOT is a novel framework that combines appearance and motion features of objects with geometric information to provide more accurate tracking.
Experimental results show remarkable performance in terms of HOTA, IDF1, and MOTA metrics in comparison with state-of-the-art methods.
arXiv Detail & Related papers (2023-09-03T04:58:12Z) - Beyond SOT: Tracking Multiple Generic Objects at Once [141.36900362724975]
Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video.
We introduce a new large-scale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence.
Our approach achieves highly competitive results on single-object GOT datasets, setting a new state of the art on TrackingNet with a success rate AUC of 84.4%.
arXiv Detail & Related papers (2022-12-22T17:59:19Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
We ad-dress problems in a Bayesian tracking and detection framework parameterized by neural network outputs.
We propose a particle filter-based approximate sampling algorithm for tracking object state estimation.
Based on our particle filter inference algorithm, a semi-supervised learn-ing algorithm is utilized for learning tracking network on intermittent labeled frames.
arXiv Detail & Related papers (2022-05-05T00:18:57Z) - Charged particle tracking via edge-classifying interaction networks [0.0]
In this work, we adapt the physics-motivated interaction network (IN) GNN to the problem of charged-particle tracking in the high-pileup conditions expected at the HL-LHC.
We demonstrate the IN's excellent edge-classification accuracy and tracking efficiency through a suite of measurements at each stage of GNN-based tracking.
The proposed IN architecture is substantially smaller than previously studied GNN tracking architectures, a reduction in size critical for enabling GNN-based tracking in constrained computing environments.
arXiv Detail & Related papers (2021-03-30T21:58:52Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - A Quantum Graph Neural Network Approach to Particle Track Reconstruction [1.087475836765689]
We present an improved model with an iterative approach to overcome the low accuracy of the initial oversimplified Tree Network (TTN) model.
We aim to leverage the capability of quantum computing to evaluate a very large number of states simultaneously and thus to effectively search a large parameter space.
arXiv Detail & Related papers (2020-07-14T07:25:24Z) - Track Seeding and Labelling with Embedded-space Graph Neural Networks [3.5236955190576693]
The Exa.TrkX project is investigating machine learning approaches to particle track reconstruction.
The most promising of these solutions, graph neural networks (GNN), process the event as a graph that connects track measurements.
We report updates on the state-of-the-art architectures for this task.
arXiv Detail & Related papers (2020-06-30T23:43:28Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
We employ learnable optimizations to improve robustness and speed up solver convergence.
First, we upgrade the tracking objective by integrating an alignment data term on deep features which are learned end-to-end through CNN.
Second, we bridge the gap between the preconditioning technique and learning method by introducing a ConditionNet which is trained to generate a preconditioner.
arXiv Detail & Related papers (2020-03-27T04:40:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.