論文の概要: Adaptive Dependency Learning Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2312.03903v1
- Date: Wed, 6 Dec 2023 20:56:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 16:53:49.196284
- Title: Adaptive Dependency Learning Graph Neural Networks
- Title(参考訳): 適応型依存学習グラフニューラルネットワーク
- Authors: Abishek Sriramulu, Nicolas Fourrier and Christoph Bergmeir
- Abstract要約: 本稿では,ニューラルネットワークと統計構造学習モデルを組み合わせたハイブリッドアプローチを提案する。
提案手法は,事前定義された依存性グラフを使わずに,実世界のベンチマークデータセットを用いて性能を著しく向上させる。
- 参考スコア(独自算出の注目度): 5.653058780958551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNN) have recently gained popularity in the
forecasting domain due to their ability to model complex spatial and temporal
patterns in tasks such as traffic forecasting and region-based demand
forecasting. Most of these methods require a predefined graph as input, whereas
in real-life multivariate time series problems, a well-predefined dependency
graph rarely exists. This requirement makes it harder for GNNs to be utilised
widely for multivariate forecasting problems in other domains such as retail or
energy. In this paper, we propose a hybrid approach combining neural networks
and statistical structure learning models to self-learn the dependencies and
construct a dynamically changing dependency graph from multivariate data aiming
to enable the use of GNNs for multivariate forecasting even when a well-defined
graph does not exist. The statistical structure modeling in conjunction with
neural networks provides a well-principled and efficient approach by bringing
in causal semantics to determine dependencies among the series. Finally, we
demonstrate significantly improved performance using our proposed approach on
real-world benchmark datasets without a pre-defined dependency graph.
- Abstract(参考訳): グラフニューラルネットワーク(gnn)は最近、トラフィック予測や地域ベースの需要予測といったタスクにおける複雑な空間的および時間的パターンをモデル化する能力により、予測領域で人気が高まっている。
これらの手法の多くは入力として事前定義されたグラフを必要とするが、実生活における多変量時系列問題では、よく定義された依存グラフはほとんど存在しない。
この要求により、小売やエネルギーといった他の領域における多変量予測問題に対して、GNNが広く利用されることが困難になる。
本稿では,ニューラルネットワークと統計構造学習モデルを組み合わせたハイブリッドアプローチを提案し,その依存関係を自己学習し,多変量データから動的に変化する依存性グラフを構築する。
ニューラルネットワークと組み合わせた統計的構造モデリングは、系列間の依存関係を決定する因果意味論を導入することによって、十分に導出的で効率的なアプローチを提供する。
最後に,実世界のベンチマークデータセットに対して,事前定義された依存関係グラフを使わずに,提案手法により性能が大幅に向上することを示す。
関連論文リスト
- Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting [0.16492989697868887]
本稿では,相互依存を示すエッジを持つグラフにおいて,多変量信号をノードとして表現する方法を提案する。
我々はグラフニューラルネットワーク(GNN)とアテンションメカニズムを活用し、時系列データ内の基礎となる関係を効率的に学習する。
提案モデルの有効性を,長期予測タスク用に設計された実世界のベンチマークデータセットで評価した。
論文 参考訳(メタデータ) (2023-11-21T14:24:21Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Graph-enabled Reinforcement Learning for Time Series Forecasting with
Adaptive Intelligence [11.249626785206003]
グラフニューラルネットワーク(GNN)と強化学習(RL)を用いたモニタリングによる時系列データの予測手法を提案する。
GNNは、データのグラフ構造をモデルに明示的に組み込むことができ、時間的依存関係をより自然な方法でキャプチャすることができる。
このアプローチは、医療、交通、天気予報など、複雑な時間構造におけるより正確な予測を可能にする。
論文 参考訳(メタデータ) (2023-09-18T22:25:12Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis [12.995632804090198]
グラフ時間畳み込みニューラルネットワーク(GTCNN)を学習支援の原則アーキテクチャとして導入する。
このアプローチはどんな種類のプロダクトグラフでも機能し、パラメトリックグラフを導入して、プロダクトの時間的結合も学べます。
GTCNNが最先端のソリューションと好意的に比較できることを示す。
論文 参考訳(メタデータ) (2022-06-30T10:20:52Z) - Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph
Attention [20.52864145999387]
長期的テンソル時間予測(LSTF)は、空間的領域と時間的領域、文脈的情報、およびデータ固有のパターン間の長期的依存関係を利用する。
本稿では,各ノードのコンテキスト情報と長期駐車による時間的データ依存構造を表現する新しいグラフモデルを提案する。
提案手法は,LSTF予測タスクにおける既存のグラフニューラルネットワークモデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-04-23T06:51:37Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - Amortized Probabilistic Detection of Communities in Graphs [49.46170819501234]
そこで我々は,アモータイズされたコミュニティ検出のためのシンプルなフレームワークを提案する。
我々はGNNの表現力と最近のアモータイズクラスタリングの手法を組み合わせる。
我々は、合成および実データセットに関するフレームワークから、いくつかのモデルを評価する。
論文 参考訳(メタデータ) (2020-10-29T16:18:48Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。