論文の概要: Improving Gradient-guided Nested Sampling for Posterior Inference
- arxiv url: http://arxiv.org/abs/2312.03911v1
- Date: Wed, 6 Dec 2023 21:09:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 16:37:17.114695
- Title: Improving Gradient-guided Nested Sampling for Posterior Inference
- Title(参考訳): 後方推定のための勾配誘導ネストサンプリングの改善
- Authors: Pablo Lemos, Nikolay Malkin, Will Handley, Yoshua Bengio, Yashar
Hezaveh, Laurence Perreault-Levasseur
- Abstract要約: 本稿では,パフォーマンス,汎用的勾配誘導型ネストサンプリングアルゴリズム,$tt GGNS$を提案する。
後部分布から大量の高品質なサンプルを得るために,ネストサンプリングと生成フローネットワークを組み合わせる可能性を示す。
- 参考スコア(独自算出の注目度): 47.08481529384556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a performant, general-purpose gradient-guided nested sampling
algorithm, ${\tt GGNS}$, combining the state of the art in differentiable
programming, Hamiltonian slice sampling, clustering, mode separation, dynamic
nested sampling, and parallelization. This unique combination allows ${\tt
GGNS}$ to scale well with dimensionality and perform competitively on a variety
of synthetic and real-world problems. We also show the potential of combining
nested sampling with generative flow networks to obtain large amounts of
high-quality samples from the posterior distribution. This combination leads to
faster mode discovery and more accurate estimates of the partition function.
- Abstract(参考訳): 本稿では, 微分可能プログラミング, ハミルトンスライスサンプリング, クラスタリング, モード分離, 動的ネストサンプリング, 並列化における技術状況を組み合わせた, 高性能で汎用的な勾配誘導型ネストサンプリングアルゴリズム, ${\tt GGNS}$を提案する。
このユニークな組み合わせにより、${\tt GGNS}$は次元でうまくスケールでき、様々な合成および実世界の問題で競争的に機能する。
また, 営巣サンプリングと生成フローネットワークを組み合わせることで, 後方分布から大量の高品質なサンプルを得る可能性を示した。
この組み合わせは、高速なモード発見とパーティション関数のより正確な推定につながる。
関連論文リスト
- Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel [10.840582511203024]
我々のアルゴリズムは、$widetilde O(log2 d)$ parallel roundsでのみ実行できるように並列化可能であることを示す。
また、我々のアルゴリズムは、$widetilde O(log2 d)$ parallel roundsでしか実行できないことを示す。
論文 参考訳(メタデータ) (2024-06-03T01:34:34Z) - Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
非log-concave分布からのサンプリングのための近位サンプリング器 (SPS) について検討した。
対象分布への収束性は,アルゴリズムの軌道が有界である限り保証可能であることを示す。
我々は、Langevin dynamics(SGLD)とLangevin-MALAの2つの実装可能な変種を提供し、SPS-SGLDとSPS-MALAを生み出した。
論文 参考訳(メタデータ) (2024-05-27T00:53:18Z) - Accelerating Diffusion Models with Parallel Sampling: Inference at Sub-Linear Time Complexity [11.71206628091551]
拡散モデルは、訓練と評価に費用がかかるため、拡散モデルの推論コストを削減することが大きな目標である。
並列サンプリング手法であるHh2024parallelを用いて拡散モデルを高速化する実験的な成功に触発されて,サンプリングプロセスを各ブロック内に並列化可能なPicard繰り返しを持つ$mathcalO(1)$ブロックに分割することを提案する。
我々の結果は、高速で効率的な高次元データサンプリングの可能性に光を当てた。
論文 参考訳(メタデータ) (2024-05-24T23:59:41Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
反復Denoising Energy Matching (iDEM)
iDEMは,拡散型サンプリング装置から高モデル密度のサンプリング領域を (I) 交換し, (II) それらのサンプルをマッチング目的に使用した。
提案手法は,全測定値の最先端性能を達成し,2~5倍の速さでトレーニングを行う。
論文 参考訳(メタデータ) (2024-02-09T01:11:23Z) - Calibrate and Debias Layer-wise Sampling for Graph Convolutional
Networks [39.56471534442315]
本稿では,行列近似の観点からアプローチを再考する。
本稿では,サンプリング確率と効率的なデバイアスアルゴリズムを構築するための新しい原理を提案する。
改良は、推定分散の広範囲な解析と、一般的なベンチマークの実験によって実証される。
論文 参考訳(メタデータ) (2022-06-01T15:52:06Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
本稿では,ガウス過程に対して,パラメータ空間全体に対して同時に保持可能な保証付きスケーラブルな近似を導入する。
我々の近似は、スパーススペクトルガウス過程(SSGP)のための改良されたサンプル複雑性解析から得られる。
論文 参考訳(メタデータ) (2020-11-17T05:41:50Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
深層学習の成功に基づいて、GAN(Generative Adversarial Networks)は、観測されたサンプルから確率分布を学習するための現代的なアプローチを提供する。
GANはしばしば、ジェネレータが入力分布の既存のすべてのモードをキャプチャできないモード崩壊問題に悩まされる。
情報理論のアプローチを採り、生成したサンプルのエントロピーの変動的下限を最大化し、それらの多様性を増大させる。
論文 参考訳(メタデータ) (2020-09-24T19:34:37Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
スパースサンプリングされた場所のみの機能を計算することを提案する。
次に、効率的な手順で特徴写像を密に再構築する。
提案したネットワークは、様々なコンピュータビジョンタスクの精度を維持しながら、かなりの計算を省くために実験的に示されている。
論文 参考訳(メタデータ) (2020-03-19T15:36:31Z) - Ensemble Slice Sampling: Parallel, black-box and gradient-free inference
for correlated & multimodal distributions [0.0]
スライスサンプリング (Slice Sampling) は、最小ハンドチューニングで目標分布の特性に適応するマルコフ連鎖モンテカルロアルゴリズムとして登場した。
本稿では,初期長さ尺度を適応的に調整することで,そのような困難を回避できるアルゴリズムであるEnsemble Slice Sampling(ESS)を紹介する。
これらのアフィン不変アルゴリズムは簡単に構築でき、手作業で調整する必要がなく、並列計算環境で容易に実装できる。
論文 参考訳(メタデータ) (2020-02-14T19:00:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。