The sample complexity of multi-distribution learning
- URL: http://arxiv.org/abs/2312.04027v2
- Date: Mon, 29 Jan 2024 02:17:38 GMT
- Title: The sample complexity of multi-distribution learning
- Authors: Binghui Peng
- Abstract summary: We show that an algorithm of sample complexity $widetildeO((d+k)epsilon-2) cdot (k/epsilon)o(1)$ resolves the COLT 2023 open problem of Awasthi, Haghtalab and Zhao.
- Score: 17.45683822446751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-distribution learning generalizes the classic PAC learning to handle
data coming from multiple distributions. Given a set of $k$ data distributions
and a hypothesis class of VC dimension $d$, the goal is to learn a hypothesis
that minimizes the maximum population loss over $k$ distributions, up to
$\epsilon$ additive error. In this paper, we settle the sample complexity of
multi-distribution learning by giving an algorithm of sample complexity
$\widetilde{O}((d+k)\epsilon^{-2}) \cdot (k/\epsilon)^{o(1)}$. This matches the
lower bound up to sub-polynomial factor and resolves the COLT 2023 open problem
of Awasthi, Haghtalab and Zhao [AHZ23].
Related papers
- Optimal Sample Complexity for Average Reward Markov Decision Processes [1.0445957451908694]
We develop an estimator for the optimal policy of average reward MDPs with a sample complexity of $widetilde O(|S||A|t_textmix2 epsilon-2)$.
This marks the first algorithm and analysis to reach the literature's lower bound.
arXiv Detail & Related papers (2023-10-13T03:08:59Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - The Sample Complexity of Multi-Distribution Learning for VC Classes [25.73730126599202]
Multi-distribution learning is a generalization of PAC learning to settings with multiple data distributions.
There remains a significant gap between the known upper and lower bounds for PAC-learnable classes.
We discuss recent progress on this problem and some hurdles that are fundamental to the use of game dynamics in statistical learning.
arXiv Detail & Related papers (2023-07-22T18:02:53Z) - A Finite Sample Complexity Bound for Distributionally Robust Q-learning [17.96094201655567]
We consider a reinforcement learning setting in which the deployment environment is different from the training environment.
Applying a robust Markov decision processes formulation, we extend the distributionally robust $Q$-learning framework studied in Liu et al.
This is the first sample complexity result for the model-free robust RL problem.
arXiv Detail & Related papers (2023-02-26T01:15:32Z) - Replicable Clustering [57.19013971737493]
We propose algorithms for the statistical $k$-medians, statistical $k$-means, and statistical $k$-centers problems by utilizing approximation routines for their counterparts in a black-box manner.
We also provide experiments on synthetic distributions in 2D using the $k$-means++ implementation from sklearn as a black-box that validate our theoretical results.
arXiv Detail & Related papers (2023-02-20T23:29:43Z) - On-Demand Sampling: Learning Optimally from Multiple Distributions [63.20009081099896]
Social and real-world considerations have given rise to multi-distribution learning paradigms.
We establish the optimal sample complexity of these learning paradigms and give algorithms that meet this sample complexity.
Our algorithm design and analysis are enabled by our extensions of online learning techniques for solving zero-sum games.
arXiv Detail & Related papers (2022-10-22T19:07:26Z) - Statistically Near-Optimal Hypothesis Selection [33.83129262033921]
We derive an optimal $2$-approximation learning strategy for the Hypothesis Selection problem.
This is the first algorithm that simultaneously achieves the best approximation factor and sample complexity.
arXiv Detail & Related papers (2021-08-17T21:11:20Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
We are given i.i.d. samples from a distribution of the form $Z = (1-epsilon) X + epsilon B$, where $X$ is a zero-mean and unknown covariance Gaussian $mathcalN(0, Sigma)$.
In the absence of contamination, prior work gave a simple tester for this hypothesis testing task that uses $O(d)$ samples.
We prove a sample complexity lower bound of $Omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma
arXiv Detail & Related papers (2020-12-31T18:24:41Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z) - SURF: A Simple, Universal, Robust, Fast Distribution Learning Algorithm [64.13217062232874]
SURF is an algorithm for approximating distributions by piecewises.
It outperforms state-of-the-art algorithms in experiments.
arXiv Detail & Related papers (2020-02-22T01:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.