Fine-tuning vision foundation model for crack segmentation in civil infrastructures
- URL: http://arxiv.org/abs/2312.04233v3
- Date: Tue, 23 Apr 2024 08:59:25 GMT
- Title: Fine-tuning vision foundation model for crack segmentation in civil infrastructures
- Authors: Kang Ge, Chen Wang, Yutao Guo, Yansong Tang, Zhenzhong Hu, Hongbing Chen,
- Abstract summary: Fine-tuning methods are adopted to fine-tune the foundation model in semantic segmentation: the Segment Anything Model (SAM)
CrackSAM exhibits remarkable superiority, particularly under challenging conditions such as dim lighting, shadows, road markings, construction joints, and other interference factors.
These cross-scenario results demonstrate the outstanding zero-shot capability of foundation models and provide new ideas for developing vision models in civil engineering.
- Score: 13.731957127190274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale foundation models have become the mainstream deep learning method, while in civil engineering, the scale of AI models is strictly limited. In this work, a vision foundation model is introduced for crack segmentation. Two parameter-efficient fine-tuning methods, adapter and low-rank adaptation, are adopted to fine-tune the foundation model in semantic segmentation: the Segment Anything Model (SAM). The fine-tuned CrackSAM shows excellent performance on different scenes and materials. To test the zero-shot performance of the proposed method, two unique datasets related to road and exterior wall cracks are collected, annotated and open-sourced, for a total of 810 images. Comparative experiments are conducted with twelve mature semantic segmentation models. On datasets with artificial noise and previously unseen datasets, the performance of CrackSAM far exceeds that of all state-of-the-art models. CrackSAM exhibits remarkable superiority, particularly under challenging conditions such as dim lighting, shadows, road markings, construction joints, and other interference factors. These cross-scenario results demonstrate the outstanding zero-shot capability of foundation models and provide new ideas for developing vision models in civil engineering.
Related papers
- Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling [25.705179111920806]
This work addresses the question of why and when diffusion models excel at learning high-quality representations in a self-supervised manner.
We develop a mathematical framework based on a low-dimensional data model and posterior estimation, revealing a fundamental trade-off between generation and representation quality near the final stage of image generation.
Building on these insights, we propose an ensemble method that aggregates features across noise levels, significantly improving both clean performance and robustness under label noise.
arXiv Detail & Related papers (2025-02-09T01:58:28Z) - SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation [81.36747103102459]
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications.
Current state-of-the-art methods focus on training innovative architectural designs on confined datasets.
We investigate the impact of scaling up EHPS towards a family of generalist foundation models.
arXiv Detail & Related papers (2025-01-16T18:59:46Z) - FoundIR: Unleashing Million-scale Training Data to Advance Foundation Models for Image Restoration [66.61201445650323]
Existing methods suffer from a generalization bottleneck in real-world scenarios.
We contribute a million-scale dataset with two notable advantages over existing training data.
We propose a robust model, FoundIR, to better address a broader range of restoration tasks in real-world scenarios.
arXiv Detail & Related papers (2024-12-02T12:08:40Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - GeoBench: Benchmarking and Analyzing Monocular Geometry Estimation Models [41.76935689355034]
Discriminative and generative pretraining have yielded geometry estimation models with strong generalization capabilities.
We build fair and strong baselines for evaluating and analyzing the geometry estimation models.
We evaluate monocular geometry estimators on more challenging benchmarks for geometry estimation task with diverse scenes and high-quality annotations.
arXiv Detail & Related papers (2024-06-18T14:44:12Z) - Explore In-Context Segmentation via Latent Diffusion Models [132.26274147026854]
latent diffusion model (LDM) is an effective minimalist for in-context segmentation.
We build a new and fair in-context segmentation benchmark that includes both image and video datasets.
arXiv Detail & Related papers (2024-03-14T17:52:31Z) - pix2gestalt: Amodal Segmentation by Synthesizing Wholes [34.45464291259217]
pix2gestalt is a framework for zero-shot amodal segmentation.
We learn a conditional diffusion model for reconstructing whole objects in challenging zero-shot cases.
arXiv Detail & Related papers (2024-01-25T18:57:36Z) - Segment Anything Model Can Not Segment Anything: Assessing AI Foundation
Model's Generalizability in Permafrost Mapping [19.307294875969827]
This paper introduces AI foundation models and their defining characteristics.
We evaluate the performance of large AI vision models, especially Meta's Segment Anything Model (SAM)
The results show that although promising, SAM still has room for improvement to support AI-augmented terrain mapping.
arXiv Detail & Related papers (2024-01-16T19:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.