Explore In-Context Segmentation via Latent Diffusion Models
- URL: http://arxiv.org/abs/2403.09616v1
- Date: Thu, 14 Mar 2024 17:52:31 GMT
- Title: Explore In-Context Segmentation via Latent Diffusion Models
- Authors: Chaoyang Wang, Xiangtai Li, Henghui Ding, Lu Qi, Jiangning Zhang, Yunhai Tong, Chen Change Loy, Shuicheng Yan,
- Abstract summary: latent diffusion model (LDM) is an effective minimalist for in-context segmentation.
We build a new and fair in-context segmentation benchmark that includes both image and video datasets.
- Score: 132.26274147026854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-context segmentation has drawn more attention with the introduction of vision foundation models. Most existing approaches adopt metric learning or masked image modeling to build the correlation between visual prompts and input image queries. In this work, we explore this problem from a new perspective, using one representative generation model, the latent diffusion model (LDM). We observe a task gap between generation and segmentation in diffusion models, but LDM is still an effective minimalist for in-context segmentation. In particular, we propose two meta-architectures and correspondingly design several output alignment and optimization strategies. We have conducted comprehensive ablation studies and empirically found that the segmentation quality counts on output alignment and in-context instructions. Moreover, we build a new and fair in-context segmentation benchmark that includes both image and video datasets. Experiments validate the efficiency of our approach, demonstrating comparable or even stronger results than previous specialist models or visual foundation models. Our study shows that LDMs can also achieve good enough results for challenging in-context segmentation tasks.
Related papers
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
Few-shot Semantic has evolved into In-context tasks, morphing into a crucial element in assessing generalist segmentation models.
Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework.
Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework.
arXiv Detail & Related papers (2024-10-03T10:33:49Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - SegICL: A Multimodal In-context Learning Framework for Enhanced Segmentation in Medical Imaging [24.32438479339158]
We introduce SegICL, a novel approach leveraging In-Context Learning (ICL) for image segmentation.
SegICL has the capability to employ text-guided segmentation and conduct in-context learning with a small set of image-mask pairs.
The performance of segmentation when provided thre-shots is approximately 1.5 times better than the performance in a zero-shot setting.
arXiv Detail & Related papers (2024-03-25T09:43:56Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - SEGIC: Unleashing the Emergent Correspondence for In-Context Segmentation [87.18373801829314]
In-context segmentation aims at segmenting novel images using a few labeled example images, termed as "in-context examples"
We propose SEGIC, an end-to-end segment-in-context framework built upon a single vision foundation model (VFM)
SEGIC is a straightforward yet effective approach that yields state-of-the-art performance on one-shot segmentation benchmarks.
arXiv Detail & Related papers (2023-11-24T18:59:42Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.