Contextual Subspace Variational Quantum Eigensolver Calculation of the Dissociation Curve of Molecular Nitrogen on a Superconducting Quantum Computer
- URL: http://arxiv.org/abs/2312.04392v2
- Date: Wed, 24 Jul 2024 10:27:24 GMT
- Title: Contextual Subspace Variational Quantum Eigensolver Calculation of the Dissociation Curve of Molecular Nitrogen on a Superconducting Quantum Computer
- Authors: Tim Weaving, Alexis Ralli, Peter J. Love, Sauro Succi, Peter V. Coveney,
- Abstract summary: We present an experimental demonstration of the Contextual Subspace Variational Quantum Eigensolver on superconducting quantum hardware.
In particular, we compute the potential energy curve for molecular nitrogen, where a dominance of static correlation in the dissociation limit proves challenging for many conventional quantum chemistry techniques.
Our quantum simulations retain good agreement with the full configuration interaction energy in the chosen STO-3G basis, outperforming all benchmarked single-reference wavefunction techniques in capturing the bond-breaking appropriately.
- Score: 0.06990493129893112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we present an experimental demonstration of the Contextual Subspace Variational Quantum Eigensolver on superconducting quantum hardware. In particular, we compute the potential energy curve for molecular nitrogen, where a dominance of static correlation in the dissociation limit proves challenging for many conventional quantum chemistry techniques. Our quantum simulations retain good agreement with the full configuration interaction energy in the chosen STO-3G basis, outperforming all benchmarked single-reference wavefunction techniques in capturing the bond-breaking appropriately. Moreover, our methodology is competitive with several multiconfigurational approaches, but at a considerable saving of quantum resource, meaning larger active spaces can be treated for a fixed qubit allowance. To achieve this result we deploy an error mitigation/suppression strategy comprised of dynamical decoupling, measurement-error mitigation and zero-noise extrapolation, in addition to circuit parallelization that not only provides passive averaging of noise but improves the effective shot-yield to reduce the measurement overhead. Furthermore, we introduce a modification to previous adaptive ansatz construction algorithms that incorporates hardware-awareness into our variational circuits to minimize the transpilation cost for the target qubit topology.
Related papers
- Projective Quantum Eigensolver with Generalized Operators [0.0]
We develop a methodology for determining the generalized operators in terms of a closed form residual equations in the PQE framework.
With the application on several molecular systems, we have demonstrated our ansatz achieves similar accuracy to the (disentangled) UCC with singles, doubles and triples.
arXiv Detail & Related papers (2024-10-21T15:40:22Z) - Projective Quantum Eigensolver via Adiabatically Decoupled Subsystem Evolution: a Resource Efficient Approach to Molecular Energetics in Noisy Quantum Computers [0.0]
We develop a projective formalism that aims to compute ground-state energies of molecular systems accurately using Noisy Intermediate Scale Quantum (NISQ) hardware.
We demonstrate the method's superior performance under noise while concurrently ensuring requisite accuracy in future fault-tolerant systems.
arXiv Detail & Related papers (2024-03-13T13:27:40Z) - Noise-Robust Detection of Quantum Phase Transitions [0.0]
We explore a finite-size spin model with multiple phase-like' regions characterized by distinct ground-state configurations.
We show that calculations of the energy derivative, two-site spin correlation functions, and the fidelity susceptibility yield accurate behavior across multiple regions.
This work shows promising potential for near-term application to identifying quantum phase transitions.
arXiv Detail & Related papers (2024-02-29T08:34:11Z) - Quantum Advantage Actor-Critic for Reinforcement Learning [5.579028648465784]
We propose a novel quantum reinforcement learning approach that combines the Advantage Actor-Critic algorithm with variational quantum circuits.
We empirically test multiple quantum Advantage Actor-Critic configurations with the well known Cart Pole environment to evaluate our approach in control tasks with continuous state spaces.
arXiv Detail & Related papers (2024-01-13T11:08:45Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Matrix product channel: Variationally optimized quantum tensor network
to mitigate noise and reduce errors for the variational quantum eigensolver [0.0]
We develop a method to exploit the quantum-classical interface provided by informationally complete measurements.
We argue that a hybrid strategy of using the quantum hardware together with the classical software outperforms a purely classical strategy.
The algorithm can be applied as the final postprocessing step in the quantum hardware simulation of protein-ligand complexes in the context of drug design.
arXiv Detail & Related papers (2022-12-20T13:03:48Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.