FedRDF: A Robust and Dynamic Aggregation Function against Poisoning
Attacks in Federated Learning
- URL: http://arxiv.org/abs/2402.10082v1
- Date: Thu, 15 Feb 2024 16:42:04 GMT
- Title: FedRDF: A Robust and Dynamic Aggregation Function against Poisoning
Attacks in Federated Learning
- Authors: Enrique M\'armol Campos and Aurora Gonz\'alez Vidal and Jos\'e Luis
Hern\'andez Ramos and Antonio Skarmeta
- Abstract summary: Federated Learning (FL) represents a promising approach to typical privacy concerns associated with centralized Machine Learning (ML) deployments.
Despite its well-known advantages, FL is vulnerable to security attacks such as Byzantine behaviors and poisoning attacks.
Our proposed approach was tested against various model poisoning attacks, demonstrating superior performance over state-of-the-art aggregation methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) represents a promising approach to typical privacy
concerns associated with centralized Machine Learning (ML) deployments. Despite
its well-known advantages, FL is vulnerable to security attacks such as
Byzantine behaviors and poisoning attacks, which can significantly degrade
model performance and hinder convergence. The effectiveness of existing
approaches to mitigate complex attacks, such as median, trimmed mean, or Krum
aggregation functions, has been only partially demonstrated in the case of
specific attacks. Our study introduces a novel robust aggregation mechanism
utilizing the Fourier Transform (FT), which is able to effectively handling
sophisticated attacks without prior knowledge of the number of attackers.
Employing this data technique, weights generated by FL clients are projected
into the frequency domain to ascertain their density function, selecting the
one exhibiting the highest frequency. Consequently, malicious clients' weights
are excluded. Our proposed approach was tested against various model poisoning
attacks, demonstrating superior performance over state-of-the-art aggregation
methods.
Related papers
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL) offers a promising solution to the privacy concerns associated with centralized Machine Learning (ML)
FL is vulnerable to various security threats, including poisoning attacks, where adversarial clients manipulate the training data or model updates to degrade overall model performance.
We present a defense mechanism designed to mitigate poisoning attacks in federated learning for time-series tasks.
arXiv Detail & Related papers (2024-11-05T16:23:19Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
We introduce Celtibero, a novel defense mechanism that integrates layered aggregation to enhance robustness against adversarial manipulation.
We demonstrate that Celtibero consistently achieves high main task accuracy (MTA) while maintaining minimal attack success rates (ASR) across a range of untargeted and targeted poisoning attacks.
arXiv Detail & Related papers (2024-08-26T12:54:00Z) - Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning (FL) is a distributed machine learning diagram that enables multiple clients to collaboratively train a global model without sharing their private local data.
FL systems are vulnerable to attacks that are happening in malicious clients through data poisoning and model poisoning.
Existing defense methods typically focus on mitigating specific types of poisoning and are often ineffective against unseen types of attack.
arXiv Detail & Related papers (2024-08-05T20:27:45Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - STDLens: Model Hijacking-Resilient Federated Learning for Object
Detection [13.895922908738507]
Federated Learning (FL) has been gaining popularity as a collaborative learning framework to train deep learning-based object detection models over a distributed population of clients.
Despite its advantages, FL is vulnerable to model hijacking.
This paper introduces STDLens, a principled approach to safeguarding FL against such attacks.
arXiv Detail & Related papers (2023-03-21T00:15:53Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.