Sparsification Under Siege: Defending Against Poisoning Attacks in Communication-Efficient Federated Learning
- URL: http://arxiv.org/abs/2505.01454v4
- Date: Mon, 21 Jul 2025 14:15:12 GMT
- Title: Sparsification Under Siege: Defending Against Poisoning Attacks in Communication-Efficient Federated Learning
- Authors: Zhiyong Jin, Runhua Xu, Chao Li, Yizhong Liu, Jianxin Li, James Joshi,
- Abstract summary: Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy.<n>It faces significant challenges in communication efficiency and vulnerability to poisoning attacks.<n>We propose FLARE, a novel federated learning framework that integrates sparse index mask inspection and model update sign similarity analysis.
- Score: 9.911465831373423
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy, yet it faces significant challenges in communication efficiency and vulnerability to poisoning attacks. While sparsification techniques mitigate communication overhead by transmitting only critical model parameters, they inadvertently amplify security risks: adversarial clients can exploit sparse updates to evade detection and degrade model performance. Existing defense mechanisms, designed for standard FL communication scenarios, are ineffective in addressing these vulnerabilities within sparsified FL. To bridge this gap, we propose FLARE, a novel federated learning framework that integrates sparse index mask inspection and model update sign similarity analysis to detect and mitigate poisoning attacks in sparsified FL. Extensive experiments across multiple datasets and adversarial scenarios demonstrate that FLARE significantly outperforms existing defense strategies, effectively securing sparsified FL against poisoning attacks while maintaining communication efficiency.
Related papers
- R-TPT: Improving Adversarial Robustness of Vision-Language Models through Test-Time Prompt Tuning [97.49610356913874]
We propose a robust test-time prompt tuning (R-TPT) for vision-language models (VLMs)<n>R-TPT mitigates the impact of adversarial attacks during the inference stage.<n>We introduce a plug-and-play reliability-based weighted ensembling strategy to strengthen the defense.
arXiv Detail & Related papers (2025-04-15T13:49:31Z) - Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL) offers a promising solution to the privacy concerns associated with centralized Machine Learning (ML)
FL is vulnerable to various security threats, including poisoning attacks, where adversarial clients manipulate the training data or model updates to degrade overall model performance.
We present a defense mechanism designed to mitigate poisoning attacks in federated learning for time-series tasks.
arXiv Detail & Related papers (2024-11-05T16:23:19Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
We introduce Celtibero, a novel defense mechanism that integrates layered aggregation to enhance robustness against adversarial manipulation.
We demonstrate that Celtibero consistently achieves high main task accuracy (MTA) while maintaining minimal attack success rates (ASR) across a range of untargeted and targeted poisoning attacks.
arXiv Detail & Related papers (2024-08-26T12:54:00Z) - Poisoning with A Pill: Circumventing Detection in Federated Learning [33.915489514978084]
This paper proposes a generic and attack-agnostic augmentation approach designed to enhance the effectiveness and stealthiness of existing FL poisoning attacks against detection in FL.
Specifically, we employ a three-stage methodology that strategically constructs, generates, and injects poison into a pill during the FL training, named as pill construction, pill poisoning, and pill injection accordingly.
arXiv Detail & Related papers (2024-07-22T05:34:47Z) - Enabling Privacy-Preserving Cyber Threat Detection with Federated Learning [4.475514208635884]
This study systematically profiles the (in)feasibility of learning for privacy-preserving cyber threat detection in terms of effectiveness, byzantine resilience, and efficiency.
It shows that FL-trained detection models can achieve a performance that is comparable to centrally trained counterparts.
Under a realistic threat model, FL turns out to be adversary-resistant to attacks of both data poisoning and model poisoning.
arXiv Detail & Related papers (2024-04-08T01:16:56Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.