Relativistic quantum Otto engine: Instant work extraction from a quantum
field
- URL: http://arxiv.org/abs/2312.04485v3
- Date: Tue, 23 Jan 2024 01:23:41 GMT
- Title: Relativistic quantum Otto engine: Instant work extraction from a quantum
field
- Authors: Kensuke Gallock-Yoshimura
- Abstract summary: We use an Unruh-DeWitt particle detector to extract work from a quantum Klein-Gordon field in a globally hyperbolic curved spacetime.
A key aspect of our method is the instantaneous interaction between the detector and the field.
We demonstrate that the detector can successfully extract positive work from the quantum Otto cycle, even when two isochoric processes occur instantaneously.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we carry out a non-perturbative approach to a quantum Otto
engine, employing an Unruh-DeWitt particle detector to extract work from a
quantum Klein-Gordon field in an arbitrary globally hyperbolic curved
spacetime. We broaden the scope by considering the field in any quasi-free
state, which includes vacuum, thermal, and squeezed states. A key aspect of our
method is the instantaneous interaction between the detector and the field,
which enables a thorough non-perturbative analysis. We demonstrate that the
detector can successfully extract positive work from the quantum Otto cycle,
even when two isochoric processes occur instantaneously, provided the detector
in the second isochoric process receives a signal from the first interaction.
This signaling allows the detector to release heat into the field, thereby the
thermodynamic cycle is completed. As a demonstration, we consider a detector at
rest in flat spacetime and compute the work extracted from the Minkowski vacuum
state.
Related papers
- Quantum Otto engine driven by quantum fields [0.0]
We consider a quantum Otto engine using an Unruh-DeWitt particle detector model.
We express a generic condition for extracting positive work in terms of the effective temperature of the detector.
arXiv Detail & Related papers (2023-08-29T18:00:02Z) - Chain-mapping methods for relativistic light-matter interactions [0.0]
We employ chain-mapping methods to achieve a numerically exact treatment of the interaction between a localized emitter and a quantum field.
We extend the application range of these methods beyond emitter observables and apply them to study field observables.
arXiv Detail & Related papers (2023-06-19T19:38:56Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - General features of the thermalization of particle detectors and the
Unruh effect [0.0]
We study the thermalization of smeared particle detectors that couple locally to $any$ operator in a quantum field theory in curved spacetimes.
We show that if the field state satisfies the KMS condition with inverse temperature $beta$ with respect to the detector's local notion of time evolution, reasonable assumptions ensure that the probe thermalizes to the temperature $1/beta$ in the limit of long interaction times.
arXiv Detail & Related papers (2021-06-28T18:00:05Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Realizing an Unruh-DeWitt detector through electro-optic sampling of the
electromagnetic vacuum [0.0]
We present a new theoretical framework to describe the experimental advances in electro-optic detection of broadband quantum states.
We discuss the specific working regime of such processes, and the consequences through characterization of the quantum light involved in the detection.
arXiv Detail & Related papers (2021-03-26T10:04:07Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Uniformly accelerated quantum counting detector in Minkowski and Fulling
vacuum states [0.0]
We discuss the process of measurements by a detector in an uniformly accelerated rectilinear motion, interacting linearly with a massive scalar field.
For the massless case, we obtain that the transition probability rate of the detector in the far future is tantamount to the analogous quantity for the detector at rest in a non-inertial reference frame.
arXiv Detail & Related papers (2020-09-08T19:36:19Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.