Vacuum-Induced Quantum Gate
- URL: http://arxiv.org/abs/2507.21194v1
- Date: Mon, 28 Jul 2025 00:44:32 GMT
- Title: Vacuum-Induced Quantum Gate
- Authors: Arash Azizi,
- Abstract summary: We demonstrate that the quantum vacuum, as perceived by a uniformly accelerating observer, can be harnessed to perform a quantum Z-gate.<n>A two-level Unruh-DeWitt detector undergoes a second-order interaction with the vacuum, resulting in a two-photon emission.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate that the quantum vacuum, as perceived by a uniformly accelerating observer, can be harnessed to perform a quantum Z-gate. A two-level Unruh-DeWitt detector, prepared in a superposition of its ground and excited states, undergoes a second-order interaction with the vacuum, resulting in a two-photon emission. We derive the exact analytical form of the final entangled detector-field state and show that this emission is conditional on a phase flip of the detector's initial state-the defining feature of the gate's operation. This process harvests entanglement from the Minkowski vacuum, producing photon pairs entangled across causally disconnected Rindler wedges. This work reframes acceleration-induced radiation not as thermal noise but as a coherent computational resource, offering new pathways for relativistic quantum information.
Related papers
- Tripartite Entanglement in Multimode Cavity Quantum Electrodynamics [37.69303106863453]
We numerically investigate the generation and dynamics of tripartite entanglement among qubits in multimode cavity quantum electrodynamics.<n>Our results hold promise for the development of entanglement-based quantum networking protocols and quantum memories.
arXiv Detail & Related papers (2025-07-16T03:53:14Z) - Photonic cellular automaton simulation of relativistic quantum fields:
observation of Zitterbewegung [33.9160941148077]
Quantum Cellular Automaton (QCA) is a model for universal quantum computation.
We introduce the first photonic platform for implementing QCA-simulation of a free relativistic Dirac quantum field in 1+1 dimension.
arXiv Detail & Related papers (2024-02-12T14:27:32Z) - Relativistic quantum Otto engine: Instant work extraction from a quantum
field [0.0]
We use an Unruh-DeWitt particle detector to extract work from a quantum Klein-Gordon field in a globally hyperbolic curved spacetime.
A key aspect of our method is the instantaneous interaction between the detector and the field.
We demonstrate that the detector can successfully extract positive work from the quantum Otto cycle, even when two isochoric processes occur instantaneously.
arXiv Detail & Related papers (2023-12-07T18:00:01Z) - Adiabatic Shortcuts Completion in Quantum Field Theory: Annihilation of
Created Particles [44.99833362998488]
We investigate the completion of a nonadiabatic evolution into a shortcut to adiabaticity for a quantum field confined within a one-dimensional cavity containing two movable mirrors.
We achieve a smooth extension of the Moore functions that implements the STA.
We draw attention to the existence of a comparable problem within nonrelativistic quantum mechanics.
arXiv Detail & Related papers (2023-08-25T14:19:21Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Coherent control of a high-orbital hole in a semiconductor quantum dot [21.05348937863074]
coherent manipulation of single charge carriers in quantum dots is limited mainly to their lowest orbital states.
We demonstrate an all-optical method to control high-orbital states of a hole via stimulated Auger process.
Our work opens new possibilities for understanding the fundamental properties of high-orbital states in quantum emitters.
arXiv Detail & Related papers (2022-12-21T03:49:46Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Uniformly accelerated Brownian oscillator in (2+1)D:
temperature-dependent dissipation and frequency shift [0.0]
We consider an Unruh-DeWitt detector coupled to a quantum scalar field in the (2+1)-dimensional Minkowski spacetime.
We find that both the accelerated detector's dissipation rate and the shift of its frequency caused by the coupling to the field bath depend on the acceleration temperature.
arXiv Detail & Related papers (2022-01-20T16:45:38Z) - Motion induced excitation and radiation from an atom facing a mirror [0.0]
We study quantum dissipative effects due to the non-relativistic, bounded, accelerated motion of a single neutral atom.
We compute the spontaneous emission rate of an oscillating atom that is initially in an excited state.
arXiv Detail & Related papers (2022-01-04T20:31:19Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Realizing an Unruh-DeWitt detector through electro-optic sampling of the
electromagnetic vacuum [0.0]
We present a new theoretical framework to describe the experimental advances in electro-optic detection of broadband quantum states.
We discuss the specific working regime of such processes, and the consequences through characterization of the quantum light involved in the detection.
arXiv Detail & Related papers (2021-03-26T10:04:07Z) - Uniformly accelerated quantum counting detector in Minkowski and Fulling
vacuum states [0.0]
We discuss the process of measurements by a detector in an uniformly accelerated rectilinear motion, interacting linearly with a massive scalar field.
For the massless case, we obtain that the transition probability rate of the detector in the far future is tantamount to the analogous quantity for the detector at rest in a non-inertial reference frame.
arXiv Detail & Related papers (2020-09-08T19:36:19Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.