SPIDeRS: Structured Polarization for Invisible Depth and Reflectance Sensing
- URL: http://arxiv.org/abs/2312.04553v2
- Date: Sun, 31 Mar 2024 10:27:03 GMT
- Title: SPIDeRS: Structured Polarization for Invisible Depth and Reflectance Sensing
- Authors: Tomoki Ichikawa, Shohei Nobuhara, Ko Nishino,
- Abstract summary: We introduce structured polarization for invisible depth and reflectance sensing (SPIDeRS)
The key idea is to modulate the angle of linear polarization (AoLP) of projected light at each pixel.
The use of polarization makes it invisible and lets us recover not only depth but also directly surface normals and even reflectance.
- Score: 31.605927493154656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can we capture shape and reflectance in stealth? Such capability would be valuable for many application domains in vision, xR, robotics, and HCI. We introduce structured polarization for invisible depth and reflectance sensing (SPIDeRS), the first depth and reflectance sensing method using patterns of polarized light. The key idea is to modulate the angle of linear polarization (AoLP) of projected light at each pixel. The use of polarization makes it invisible and lets us recover not only depth but also directly surface normals and even reflectance. We implement SPIDeRS with a liquid crystal spatial light modulator (SLM) and a polarimetric camera. We derive a novel method for robustly extracting the projected structured polarization pattern from the polarimetric object appearance. We evaluate the effectiveness of SPIDeRS by applying it to a number of real-world objects. The results show that our method successfully reconstructs object shapes of various materials and is robust to diffuse reflection and ambient light. We also demonstrate relighting using recovered surface normals and reflectance. We believe SPIDeRS opens a new avenue of polarization use in visual sensing.
Related papers
- SS-SfP:Neural Inverse Rendering for Self Supervised Shape from (Mixed) Polarization [21.377923666134116]
Shape from Polarization (SfP) is the problem popularly known as Shape from Polarization (SfP)
We present a novel inverse rendering-based framework to estimate the 3D shape (per-pixel surface normals and depth) of objects and scenes from single-view polarization images.
arXiv Detail & Related papers (2024-07-12T14:29:00Z) - NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSP is a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images.
We derive photometric and geometric cues from the polarimetric image formation model and multiview azimuth consistency.
We achieve the state-of-the-art surface reconstruction results with only 6 views as input.
arXiv Detail & Related papers (2024-06-11T09:53:18Z) - Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - WildLight: In-the-wild Inverse Rendering with a Flashlight [77.31815397135381]
We propose a practical photometric solution for in-the-wild inverse rendering under unknown ambient lighting.
Our system recovers scene geometry and reflectance using only multi-view images captured by a smartphone.
We demonstrate by extensive experiments that our method is easy to implement, casual to set up, and consistently outperforms existing in-the-wild inverse rendering techniques.
arXiv Detail & Related papers (2023-03-24T17:59:56Z) - Polarimetric Multi-View Inverse Rendering [13.391866136230165]
A polarization camera has great potential for 3D reconstruction since the angle of polarization (AoP) and the degree of polarization (DoP) of reflected light are related to an object's surface normal.
We propose a novel 3D reconstruction method called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that effectively exploits geometric, photometric, and polarimetric cues extracted from input multi-view color-polarization images.
arXiv Detail & Related papers (2022-12-24T12:12:12Z) - Polarimetric Inverse Rendering for Transparent Shapes Reconstruction [1.807492010338763]
We propose a novel method for the detailed reconstruction of transparent objects by exploiting polarimetric cues.
We implicitly represent the object's geometry as a neural network, while the polarization render is capable of rendering the object's polarization images.
We build a polarization dataset for multi-view transparent shapes reconstruction to verify our method.
arXiv Detail & Related papers (2022-08-25T02:52:31Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
This paper tackles the task of uncalibrated photometric stereo for 3D object reconstruction.
We propose a new method that jointly optimize object shape, light directions, and light intensities.
Our method demonstrates state-of-the-art accuracy in light estimation and shape recovery on real-world datasets.
arXiv Detail & Related papers (2022-07-16T02:46:15Z) - PANDORA: Polarization-Aided Neural Decomposition Of Radiance [20.760987175553655]
Inverse rendering is a fundamental problem in computer graphics and vision.
Recent progress in representing scene properties as coordinate-based neural networks have facilitated neural inverse rendering.
We propose PANDORA, a polarimetric inverse rendering approach based on implicit neural representations.
arXiv Detail & Related papers (2022-03-25T05:41:52Z) - NeRFactor: Neural Factorization of Shape and Reflectance Under an
Unknown Illumination [60.89737319987051]
We address the problem of recovering shape and spatially-varying reflectance of an object from posed multi-view images of the object illuminated by one unknown lighting condition.
This enables the rendering of novel views of the object under arbitrary environment lighting and editing of the object's material properties.
arXiv Detail & Related papers (2021-06-03T16:18:01Z) - Polarimetric Multi-View Inverse Rendering [13.391866136230165]
A polarization camera has great potential for 3D reconstruction since the angle of polarization (AoP) of reflected light is related to an object's surface normal.
We propose a novel 3D reconstruction method called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that exploits geometric, photometric, and polarimetric cues extracted from input multi-view color polarization images.
arXiv Detail & Related papers (2020-07-17T09:00:20Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
We present a novel formulation to removing reflection from polarized images in the wild.
We first identify the misalignment issues of existing reflection removal datasets.
We build a new dataset with more than 100 types of glass in which obtained transmission images are perfectly aligned with input mixed images.
arXiv Detail & Related papers (2020-03-28T13:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.