Capturing long-range memory structures with tree-geometry process tensors
- URL: http://arxiv.org/abs/2312.04624v2
- Date: Tue, 22 Oct 2024 23:37:31 GMT
- Title: Capturing long-range memory structures with tree-geometry process tensors
- Authors: Neil Dowling, Kavan Modi, Roberto N. Muñoz, Sukhbinder Singh, Gregory A. L. White,
- Abstract summary: We introduce a class of quantum non-Markovian processes that exhibit decaying temporal correlations and memory distributed across time scales.
We show that the long-range correlations in this class of processes tends to originate almost entirely from memory effects.
We show how it can efficiently approximate the strong memory dynamics of the paradigm spin-boson model.
- Score: 0.0
- License:
- Abstract: We introduce a class of quantum non-Markovian processes -- dubbed process trees -- that exhibit polynomially decaying temporal correlations and memory distributed across time scales. This class of processes is described by a tensor network with tree-like geometry whose component tensors are (1) causality-preserving maps (superprocesses) and (2) locality-preserving temporal change of scale transformations. We show that the long-range correlations in this class of processes tends to originate almost entirely from memory effects, and can accommodate genuinely quantum power-law correlations in time. Importantly, this class allows efficient computation of multi-time correlation functions. To showcase the potential utility of this model-agnostic class for numerical simulation of physical models, we show how it can efficiently approximate the strong memory dynamics of the paradigmatic spin-boson model, in terms of arbitrary multitime features. In contrast to an equivalently costly matrix product operator (MPO) representation, the ansatz produces a fiducial characterization of the relevant physics. Finally, leveraging 2D tensor network renormalization group methods, we detail an algorithm for deriving a process tree from an underlying Hamiltonian, via the Feynmann-Vernon influence functional. Our work lays the foundation for the development of more efficient numerical techniques in the field of strongly interacting open quantum systems, as well as the theoretical development of a temporal renormalization group scheme.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Quantum correlation functions through tensor network path integral [0.0]
tensor networks are utilized for calculating equilibrium correlation function for open quantum systems.
The influence of the solvent on the quantum system is incorporated through an influence functional.
The design and implementation of this method is discussed along with illustrations from rate theory, symmetrized spin correlation functions, dynamical susceptibility calculations and quantum thermodynamics.
arXiv Detail & Related papers (2023-08-21T07:46:51Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - A tensor network representation of path integrals: Implementation and
analysis [0.0]
We introduce a novel tensor network-based decomposition of path integral simulations involving Feynman-Vernon influence functional.
The finite temporarily non-local interactions introduced by the influence functional can be captured very efficiently using matrix product state representation.
The flexibility of the AP-TNPI framework makes it a promising new addition to the family of path integral methods for non-equilibrium quantum dynamics.
arXiv Detail & Related papers (2021-06-23T16:41:54Z) - On the Memory Mechanism of Tensor-Power Recurrent Models [25.83531612758211]
We investigate the memory mechanism of TP recurrent models.
We show that a large degree p is an essential condition to achieve the long memory effect.
New model is expected to benefit from the long memory effect in a stable manner.
arXiv Detail & Related papers (2021-03-02T07:07:47Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Constructing Tensor Network Influence Functionals for General Quantum
Dynamics [0.0]
We use a space-time tensor network representation of the influence functional and investigate its approximability in terms of the bond dimensions and time-like entanglement.
We find that the influence functional and the intermediates involved in its construction can be efficiently approximated by low bond dimension tensor networks in certain dynamical regimes.
As one iteratively integrates out the bath, the correlations in the influence functional can first increase before decreasing, indicating that the final compressibility of the influence functional is achieved via non-trivial cancellation.
arXiv Detail & Related papers (2021-01-14T05:42:25Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Efficient variational contraction of two-dimensional tensor networks
with a non-trivial unit cell [0.0]
tensor network states provide an efficient class of states that faithfully capture strongly correlated quantum models and systems.
We generalize a recently proposed variational uniform matrix product state algorithm for capturing one-dimensional quantum lattices.
A key property of the algorithm is a computational effort that scales linearly rather than exponentially in the size of the unit cell.
arXiv Detail & Related papers (2020-03-02T19:01:06Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.