Fault-tolerant one-way noiseless amplification for microwave bosonic
quantum information processing
- URL: http://arxiv.org/abs/2312.04707v1
- Date: Thu, 7 Dec 2023 21:34:47 GMT
- Title: Fault-tolerant one-way noiseless amplification for microwave bosonic
quantum information processing
- Authors: Hany Khalifa, Riku J\"antti, Gheorghe Sorin Paraoanu
- Abstract summary: Microwave noise-less linear amplifier (NLA) suitable to circumvent the losses incurred by a flying photon undergoing an amplitude damping channel (ADC)
In this article we propose a microwave noise-less linear amplifier (NLA) suitable to circumvent the losses incurred by a flying photon undergoing an amplitude damping channel (ADC)
- Score: 0.5524804393257919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Microwave quantum information networks require reliable transmission of
single photon propagating modes over lossy channels. In this article we propose
a microwave noise-less linear amplifier (NLA) suitable to circumvent the losses
incurred by a flying photon undergoing an amplitude damping channel (ADC). The
proposed model is constructed by engineering a simple one-dimensional four node
cluster state. Contrary to conventional NLAs based on quantum scissors (QS),
single photon amplification is realized without the need for photon number
resolving detectors (PNRDs). Entanglement between nodes comprising the device's
cluster is achieved by means of a controlled phase gate (CPHASE). Furthermore,
photon measurements are implemented by quantum non demolition detectors (QNDs),
which are currently available as a part of circuit quantum electrodynamics
(cQED) toolbox. We analyze the performance of our device practically by
considering detection inefficiency and dark count probability. We further
examine the potential usage of our device in low power quantum sensing
applications and remote secret key generation (SKG). Specifically, we
demonstrate the device's ability to prepare loss-free resources offline, and
its capacity to overcome the repeater-less bound of SKG. We compare the
performance of our device against a QS-NLA for the aforementioned applications,
and highlight explicitly the operating conditions under which our device can
outperform a QS-NLA. The proposed device is also suitable for applications in
the optical domain.
Related papers
- Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Fano-Qubits for Quantum Devices with Enhanced Isolation and Bandwidth [0.6105362142646117]
Magneto-optical isolators and circulators have been widely used to safeguard quantum devices from reflections and noise in the readout stage.
We propose a new approach to quantum non-reciprocity that utilizes the intrinsic nonlinearity of qubits and broken spatial symmetry.
We show that a circuit containing Lorentz-type qubits can be transformed into Fano-type qubits with an asymmetric spectral response.
arXiv Detail & Related papers (2023-03-17T22:43:52Z) - Combining quantum noise reduction resources: a practical approach [0.0]
We provide the theoretical limits to noise reduction while combining quantum enhanced readout techniques for optomechanical sensors.
We demonstrate that backaction evasion through QND techniques dramatically reduces the technical challenges presented when using squeezed light for broadband force detection.
arXiv Detail & Related papers (2022-11-26T02:39:20Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Quantum nondemolition measurements with optical parametric amplifiers
for ultrafast universal quantum information processing [0.0]
Realization of a room-temperature ultra-fast photon-number-resolving (PNR) quantum nondemolition (QND) measurement would have significant implications for photonic quantum information processing (QIP)
We show that a coherent pump field driving a phase-mismatched optical parametric amplifier (OPA) experiences displacements conditioned on the number of signal Bogoliubov excitations.
A measurement of the pump displacement thus provides a QND measurement of the signal Bogoliubov excitations, projecting the signal mode to a squeezed photon-number state.
arXiv Detail & Related papers (2022-09-02T15:23:40Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Photon-Number-Dependent Hamiltonian Engineering for Cavities [3.1541105002077714]
We develop a scheme to engineer a target Hamiltonian for photonic cavities using ancilla qubits.
The engineered Hamiltonian admits various applications including canceling unwanted cavity self-Kerr interactions.
Our scheme can be implemented with coupled microwave cavities and transmon qubits in superconducting circuit systems.
arXiv Detail & Related papers (2020-09-16T18:00:02Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.