論文の概要: MetaDetect: Metamorphic Testing Based Anomaly Detection for Multi-UAV
Wireless Networks
- arxiv url: http://arxiv.org/abs/2312.04747v1
- Date: Thu, 7 Dec 2023 23:24:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 16:32:28.981706
- Title: MetaDetect: Metamorphic Testing Based Anomaly Detection for Multi-UAV
Wireless Networks
- Title(参考訳): MetaDetect: マルチUAV無線ネットワークにおける変成テストに基づく異常検出
- Authors: Boyang Yan
- Abstract要約: 無線アドホックネットワーク(WANET)通信の信頼性は有線ネットワークよりもはるかに低い。
提案手法は,WANET上のインシデント/アクシデントイベントを自動的に識別する上で有用である。
- 参考スコア(独自算出の注目度): 0.5076419064097734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reliability of wireless Ad Hoc Networks (WANET) communication is much
lower than wired networks. WANET will be impacted by node overload, routing
protocol, weather, obstacle blockage, and many other factors, all those
anomalies cannot be avoided. Accurate prediction of the network entirely
stopping in advance is essential after people could do networking re-routing or
changing to different bands. In the present study, there are two primary goals.
Firstly, design anomaly events detection patterns based on Metamorphic Testing
(MT) methodology. Secondly, compare the performance of evaluation metrics, such
as Transfer Rate, Occupancy rate, and the Number of packets received. Compared
to other studies, the most significant advantage of mathematical
interpretability, as well as not requiring dependence on physical environmental
information, only relies on the networking physical layer and Mac layer data.
The analysis of the results demonstrates that the proposed MT detection method
is helpful for automatically identifying incidents/accident events on WANET.
The physical layer transfer Rate metric could get the best performance.
- Abstract(参考訳): 無線アドホックネットワーク(WANET)通信の信頼性は有線ネットワークよりもはるかに低い。
WANETはノードオーバーロード、ルーティングプロトコル、天気、障害物遮断など多くの要因の影響を受け、これらの異常は回避できない。
ネットワークを再ルーティングしたり、異なるバンドに切り替えたりできるため、事前にネットワークが完全に停止する正確な予測は不可欠である。
本研究には2つの主要な目標がある。
まず,メタモルフィックテスト(MT)手法に基づく異常事象検出パターンの設計を行う。
次に、転送率、占有率、受信パケット数などの評価指標のパフォーマンスを比較した。
他の研究と比較して、数学的解釈可能性の最も大きな利点は、物理的環境情報への依存を必要とせず、ネットワーク物理層とmac層データのみに依存することである。
その結果,提案手法はwanet上のインシデント/アクシデントイベントの自動同定に有効であることがわかった。
物理層転送レートメトリックは、最高のパフォーマンスを得ることができます。
関連論文リスト
- A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks [52.09243852066406]
対向収束時間スコア(ACTS)は、対向ロバストネス指標として収束時間を測定する。
我々は,大規模画像Netデータセットに対する異なる敵攻撃に対して,提案したACTSメトリックの有効性と一般化を検証する。
論文 参考訳(メタデータ) (2023-10-10T09:39:38Z) - Deep Neural Networks based Meta-Learning for Network Intrusion Detection [0.24466725954625884]
産業の異なるコンポーネントのデジタル化と先住民ネットワーク間の相互接続性は、ネットワーク攻撃のリスクを高めている。
コンピュータネットワークの予測モデルを構築するために使用されるデータには、スキュークラス分布と攻撃型の限定表現がある。
Information Fusion and Stacking Ensemble (INFUSE) という,ネットワーク侵入検出のための新しいディープニューラルネットワークベースのメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-18T18:00:05Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Cross-network transferable neural models for WLAN interference
estimation [8.519313977400735]
本稿では,ロバストネスにおける干渉推定の原理的アプローチを採用する。
まず、実データを使って影響する要因を識別し、関連する一連の合成ワークロードを導出します。
当然のことながら、Graph Conalvolution Networks(GCNs)が全体的なパフォーマンスで最高のものになっている。
論文 参考訳(メタデータ) (2022-11-25T11:01:43Z) - Big data analysis and distributed deep learning for next-generation
intrusion detection system optimization [0.0]
本稿では,IDSよりも検出率が高く,偽陽性が低い新たな脅威を検出する方法を提案する。
我々は、Apache Spark Framework上でのLong Short Term Memory(LSTM)というディープリカレントニューラルネットワークであるNetworkingを使用して、これらの結果を達成する。
そこで本稿では,ネットワークがコンテキスト内の数百万のパケット列から通常動作を抽象的に記述し,ほぼリアルタイムで解析し,ポイント,集合,コンテキストの異常を検出するモデルを提案する。
論文 参考訳(メタデータ) (2022-09-28T09:46:16Z) - CNN-based Prediction of Network Robustness With Missing Edges [0.9239657838690227]
部分的なネットワーク情報が欠落している場合、CNNによる接続性および制御可能性予測の性能について検討する。
しきい値として、7.29%以上の情報が失われれば、CNNベースの予測の性能は著しく劣化する。
論文 参考訳(メタデータ) (2022-08-25T03:36:20Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
事前学習されたLeNet-5畳み込みニューラルネットワークに基づく新しい伝達学習フレームワークを提案する。
ソースニューラルネットワークから知識を転送して、異種ターゲットデータセットを予測することで、異なる伝送ラインの長さとインピーダンスの障害を診断することができる。
論文 参考訳(メタデータ) (2022-01-20T06:36:35Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Object Detection Made Simpler by Eliminating Heuristic NMS [70.93004137521946]
単純なNMSのないエンドツーエンドのオブジェクト検出フレームワークを示す。
検出精度は元の1段検出器と比べて同等か、さらに向上した。
論文 参考訳(メタデータ) (2021-01-28T02:38:29Z) - EagerNet: Early Predictions of Neural Networks for Computationally
Efficient Intrusion Detection [2.223733768286313]
最小限のリソースでネットワーク攻撃を検出するアーキテクチャを提案する。
アーキテクチャはバイナリまたはマルチクラスの分類問題に対処でき、ネットワークの精度を予測速度と交換できる。
論文 参考訳(メタデータ) (2020-07-27T11:31:37Z) - FairMOT: On the Fairness of Detection and Re-Identification in Multiple
Object Tracking [92.48078680697311]
マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要な問題である。
本稿では,FairMOTと呼ばれる,アンカーフリーなオブジェクト検出アーキテクチャCenterNetをベースとした,シンプルかつ効果的なアプローチを提案する。
このアプローチは、検出と追跡の両方において高い精度を達成する。
論文 参考訳(メタデータ) (2020-04-04T08:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。