論文の概要: Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review
- arxiv url: http://arxiv.org/abs/2312.04861v2
- Date: Fri, 19 Apr 2024 08:55:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 19:57:15.224851
- Title: Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review
- Title(参考訳): 自動運転におけるレーダーデータ表現の探索 - 総合的なレビュー
- Authors: Shanliang Yao, Runwei Guan, Zitian Peng, Chenhang Xu, Yilu Shi, Weiping Ding, Eng Gee Lim, Yong Yue, Hyungjoon Seo, Ka Lok Man, Jieming Ma, Xiaohui Zhu, Yutao Yue,
- Abstract要約: レビューでは、自律運転システムで使用されるさまざまなレーダーデータ表現の探索に焦点を当てている。
レーダセンサの機能と限界について紹介する。
各レーダ表現について、関連するデータセット、方法、利点、限界について検討する。
- 参考スコア(独自算出の注目度): 9.68427762815025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception information in diverse environmental conditions. This review focuses on exploring different radar data representations utilized in autonomous driving systems. Firstly, we introduce the capabilities and limitations of the radar sensor by examining the working principles of radar perception and signal processing of radar measurements. Then, we delve into the generation process of five radar representations, including the ADC signal, radar tensor, point cloud, grid map, and micro-Doppler signature. For each radar representation, we examine the related datasets, methods, advantages and limitations. Furthermore, we discuss the challenges faced in these data representations and propose potential research directions. Above all, this comprehensive review offers an in-depth insight into how these representations enhance autonomous system capabilities, providing guidance for radar perception researchers. To facilitate retrieval and comparison of different data representations, datasets and methods, we provide an interactive website at https://radar-camera-fusion.github.io/radar.
- Abstract(参考訳): センサー技術とディープラーニングの急速な進歩により、自律運転システムはインテリジェントな輸送だけでなく、インテリジェントな車両への安全かつ効率的なアクセスを提供しようとしている。
これらの装備されたセンサーのうち、レーダーセンサーは多様な環境条件下で堅牢な知覚情報を提供する上で重要な役割を担っている。
このレビューでは、自律運転システムで使用される異なるレーダーデータ表現の探索に焦点を当てる。
まず,レーダ知覚の動作原理とレーダ計測の信号処理を検証し,レーダセンサの機能と限界を紹介する。
次に、ADC信号、レーダテンソル、点雲、グリッドマップ、マイクロドップラーシグネチャを含む5つのレーダ表現の生成過程を探索する。
各レーダ表現について、関連するデータセット、方法、利点、限界について検討する。
さらに、これらのデータ表現で直面する課題について考察し、潜在的研究の方向性を提案する。
この総合的なレビューは、これらの表現が自律システムの能力をどのように強化するかを詳細に把握し、レーダー知覚研究者のためのガイダンスを提供する。
異なるデータ表現、データセット、メソッドの検索と比較を容易にするため、https://radar-camera-fusion.github.io/radar.comでインタラクティブなWebサイトを提供する。
関連論文リスト
- Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Radars for Autonomous Driving: A Review of Deep Learning Methods and
Challenges [0.021665899581403605]
Radarは、自動運転車に使用される知覚センサーのスイートの重要なコンポーネントである。
低解像度、疎度、乱雑、高い不確実性、優れたデータセットの欠如などが特徴である。
現在のレーダーモデルは、レーダーデータに比較的弱い光学的特徴に焦点を当てたライダーや視覚モデルの影響を受けやすい。
論文 参考訳(メタデータ) (2023-06-15T17:37:52Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
レーダー中心のデータセットは、レーダー知覚のためのディープラーニング技術の開発にはあまり注目されていない。
本稿では,視覚深層学習における最先端技術を活用したトランスフォーマーモデルRadarFormerを提案する。
また、チャネルチャープ時マージモジュールを導入し、精度を損なうことなく、モデルのサイズと複雑さを10倍以上に削減する。
論文 参考訳(メタデータ) (2023-04-17T17:07:35Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Deep Instance Segmentation with High-Resolution Automotive Radar [2.167586397005864]
本稿では,レーダ検出点を用いた2つの効率的な分割法を提案する。
1つは、PointNet++フレームワークを使用してエンドツーエンドのディープラーニング駆動方式で実装されている。
もう一つは、セマンティック情報を用いたレーダー検出点のクラスタリングに基づいている。
論文 参考訳(メタデータ) (2021-10-05T01:18:27Z) - Rethinking of Radar's Role: A Camera-Radar Dataset and Systematic
Annotator via Coordinate Alignment [38.24705460170415]
CRUWと呼ばれる新しいデータセットを体系的なアノテーションとパフォーマンス評価システムで提案する。
CRUWは、レーダーの無線周波数(RF)画像から3Dのオブジェクトを純粋に分類し、ローカライズすることを目指しています。
私たちの知る限り、CRUWは体系的なアノテーションと評価システムを備えた最初の公開大規模データセットです。
論文 参考訳(メタデータ) (2021-05-11T17:13:45Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。