An Explainable Ensemble-based Intrusion Detection System for Software-Defined Vehicle Ad-hoc Networks
- URL: http://arxiv.org/abs/2312.04956v5
- Date: Fri, 11 Oct 2024 03:47:23 GMT
- Title: An Explainable Ensemble-based Intrusion Detection System for Software-Defined Vehicle Ad-hoc Networks
- Authors: Shakil Ibne Ahsan, Phil Legg, S M Iftekharul Alam,
- Abstract summary: In this study, we explore the detection of cyber threats in vehicle networks through ensemble-based machine learning.
We propose a model that uses Random Forest and CatBoost as our main investigators, with Logistic Regression used to then reason on their outputs to make a final decision.
We observe that our approach improves classification accuracy, and results in fewer misclassifications compared to previous works.
- Score: 0.0
- License:
- Abstract: Intrusion Detection Systems (IDS) are widely employed to detect and mitigate external network security events. Vehicle ad-hoc Networks (VANETs) continue to evolve, especially with developments related to Connected Autonomous Vehicles (CAVs). In this study, we explore the detection of cyber threats in vehicle networks through ensemble-based machine learning, to strengthen the performance of the learnt model compared to relying on a single model. We propose a model that uses Random Forest and CatBoost as our main investigators, with Logistic Regression used to then reason on their outputs to make a final decision. To further aid analysis, we use SHAP (SHapley Additive exPlanations) analysis to examine feature importance towards the final decision stage. We use the Vehicular Reference Misbehavior (VeReMi) dataset for our experimentation and observe that our approach improves classification accuracy, and results in fewer misclassifications compared to previous works. Overall, this layered approach to decision-making combining teamwork among models with an explainable view of why they act as they do can help to achieve a more reliable and easy-to-understand cyber security solution for smart transportation networks.
Related papers
- Reliable Feature Selection for Adversarially Robust Cyber-Attack Detection [0.0]
This work presents a feature selection and consensus process that combines multiple methods and applies them to several network datasets.
By using an improved dataset with more data diversity, selecting the best time-related features and a more specific feature set, and performing adversarial training, the ML models were able to achieve a better adversarially robust generalization.
arXiv Detail & Related papers (2024-04-05T16:01:21Z) - Advancing Security in AI Systems: A Novel Approach to Detecting
Backdoors in Deep Neural Networks [3.489779105594534]
backdoors can be exploited by malicious actors on deep neural networks (DNNs) and cloud services for data processing.
Our approach leverages advanced tensor decomposition algorithms to meticulously analyze the weights of pre-trained DNNs and distinguish between backdoored and clean models.
This advancement enhances the security of deep learning and AI in networked systems, providing essential cybersecurity against evolving threats in emerging technologies.
arXiv Detail & Related papers (2024-03-13T03:10:11Z) - Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches [46.52224306624461]
We consider maximum throughput prediction enhancing, for example, streaming or high-definition mapping applications.
We highlight how confidence can be built on machine learning technologies by better understanding the underlying characteristics of the collected data.
We use explainable AI to show that machine learning can learn underlying principles of wireless networks without being explicitly programmed.
arXiv Detail & Related papers (2023-02-23T12:29:20Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - LCCDE: A Decision-Based Ensemble Framework for Intrusion Detection in
The Internet of Vehicles [7.795462813462946]
Intrusion Detection Systems (IDSs) that can identify malicious cyber-attacks have been developed.
We propose a novel ensemble IDS framework named Leader Class and Confidence Decision Ensemble (LCCDE)
LCCDE is constructed by determining the best-performing ML model among three advanced algorithms.
arXiv Detail & Related papers (2022-08-05T22:30:34Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Deep Q-Learning based Reinforcement Learning Approach for Network
Intrusion Detection [1.7205106391379026]
We introduce a new generation of network intrusion detection methods that combines a Q-learning-based reinforcement learning with a deep-feed forward neural network method for network intrusion detection.
Our proposed Deep Q-Learning (DQL) model provides an ongoing auto-learning capability for a network environment.
Our experimental results show that our proposed DQL is highly effective in detecting different intrusion classes and outperforms other similar machine learning approaches.
arXiv Detail & Related papers (2021-11-27T20:18:00Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
Unmanned Aerial Vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones.
Thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications.
Deep Neural Networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed on-board.
arXiv Detail & Related papers (2021-05-23T20:19:43Z) - Explaining Network Intrusion Detection System Using Explainable AI
Framework [0.5076419064097734]
Intrusion detection system is one of the important layers in cyber safety in today's world.
In this paper, we have used deep neural network for network intrusion detection.
We also proposed explainable AI framework to add transparency at every stage of machine learning pipeline.
arXiv Detail & Related papers (2021-03-12T07:15:09Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Federated Learning in Vehicular Networks [41.89469856322786]
Federated learning (FL) framework has been introduced as an efficient tool with the goal of reducing transmission overhead.
In this paper, we investigate the usage of FL over centralized learning (CL) in vehicular network applications to develop intelligent transportation systems.
We identify the major challenges from both learning perspective, i.e., data labeling and model training, and from the communications point of view, i.e., data rate, reliability, transmission overhead, privacy and resource management.
arXiv Detail & Related papers (2020-06-02T06:32:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.