UniTSA: A Universal Reinforcement Learning Framework for V2X Traffic
Signal Control
- URL: http://arxiv.org/abs/2312.05090v1
- Date: Fri, 8 Dec 2023 15:18:40 GMT
- Title: UniTSA: A Universal Reinforcement Learning Framework for V2X Traffic
Signal Control
- Authors: Maonan Wang, Xi Xiong, Yuheng Kan, Chengcheng Xu, Man-On Pun
- Abstract summary: Traffic congestion is a persistent problem in urban areas, which calls for the development of effective traffic signal control (TSC) systems.
In this work, a universal RL-based TSC framework is proposed for Vehicle-to-Everything (V2X) environments.
To equip the proposed RL-based framework with enhanced capability of handling various intersection structures, novel traffic state augmentation methods are tailor-made for signal light control systems.
- Score: 4.505547437110232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic congestion is a persistent problem in urban areas, which calls for
the development of effective traffic signal control (TSC) systems. While
existing Reinforcement Learning (RL)-based methods have shown promising
performance in optimizing TSC, it is challenging to generalize these methods
across intersections of different structures. In this work, a universal
RL-based TSC framework is proposed for Vehicle-to-Everything (V2X)
environments. The proposed framework introduces a novel agent design that
incorporates a junction matrix to characterize intersection states, making the
proposed model applicable to diverse intersections. To equip the proposed
RL-based framework with enhanced capability of handling various intersection
structures, novel traffic state augmentation methods are tailor-made for signal
light control systems. Finally, extensive experimental results derived from
multiple intersection configurations confirm the effectiveness of the proposed
framework. The source code in this work is available at
https://github.com/wmn7/Universal_Light
Related papers
- LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments [3.7788636451616697]
This work introduces an innovative approach that integrates Large Language Models into traffic signal control systems.
A hybrid framework that augments LLMs with a suite of perception and decision-making tools is proposed.
The findings from our simulations attest to the system's adeptness in adjusting to a multiplicity of traffic environments.
arXiv Detail & Related papers (2024-03-13T08:41:55Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Lyapunov Function Consistent Adaptive Network Signal Control with Back
Pressure and Reinforcement Learning [9.797994846439527]
This study introduces a unified framework using Lyapunov control theory, defining specific Lyapunov functions respectively.
Building on insights from Lyapunov theory, this study designs a reward function for the Reinforcement Learning (RL)-based network signal control.
The proposed algorithm is compared with several traditional and RL-based methods under pure passenger car flow and heterogenous traffic flow including freight.
arXiv Detail & Related papers (2022-10-06T00:22:02Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
We propose a DRL-based signal control system that adjusts traffic signals according to the current congestion situation on intersections.
To deal with the congestion on roads behind the intersection, we used re-routing technique to load balance the vehicles on road networks.
arXiv Detail & Related papers (2022-06-28T02:46:20Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Network-wide traffic signal control optimization using a multi-agent
deep reinforcement learning [20.385286762476436]
Inefficient traffic control may cause numerous problems such as traffic congestion and energy waste.
This paper proposes a novel multi-agent reinforcement learning method, named KS-DDPG, to achieve optimal control by enhancing the cooperation between traffic signals.
arXiv Detail & Related papers (2021-04-20T12:53:08Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z) - Learning Scalable Multi-Agent Coordination by Spatial Differentiation
for Traffic Signal Control [8.380832628205372]
We design a multiagent coordination framework based on Deep Reinforcement Learning methods for traffic signal control.
Specifically, we propose the Spatial Differentiation method for coordination which uses the temporal-spatial information in the replay buffer to amend the reward of each action.
arXiv Detail & Related papers (2020-02-27T02:16:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.