論文の概要: Shapley Values-enabled Progressive Pseudo Bag Augmentation for Whole Slide Image Classification
- arxiv url: http://arxiv.org/abs/2312.05490v4
- Date: Thu, 5 Sep 2024 13:05:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 04:21:22.002920
- Title: Shapley Values-enabled Progressive Pseudo Bag Augmentation for Whole Slide Image Classification
- Title(参考訳): 全スライド画像分類のためのシェープ値対応プログレッシブプログレッシブPseudo Bag Augmentation
- Authors: Renao Yan, Qiehe Sun, Cheng Jin, Yiqing Liu, Yonghong He, Tian Guan, Hao Chen,
- Abstract要約: 計算病理学において、全スライディング画像(WSI)分類は、そのギガピクセル解像度と限定された細かいアノテーションのため、非常に難しい課題である。
MIL(Multiple-instance Learning)は、弱教師付きソリューションを提供するが、バッグレベルのラベルからインスタンスレベルの情報を精査することは依然として困難である。
協調ゲーム理論に触発された新たなアプローチとして,各インスタンスの寄与度を評価するためにShapley値を用いることにより,IIS推定を改善する。
- 参考スコア(独自算出の注目度): 6.705260410604528
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In computational pathology, whole-slide image (WSI) classification presents a formidable challenge due to its gigapixel resolution and limited fine-grained annotations. Multiple-instance learning (MIL) offers a weakly supervised solution, yet refining instance-level information from bag-level labels remains challenging. While most of the conventional MIL methods use attention scores to estimate instance importance scores (IIS) which contribute to the prediction of the slide labels, these often lead to skewed attention distributions and inaccuracies in identifying crucial instances. To address these issues, we propose a new approach inspired by cooperative game theory: employing Shapley values to assess each instance's contribution, thereby improving IIS estimation. The computation of the Shapley value is then accelerated using attention, meanwhile retaining the enhanced instance identification and prioritization. We further introduce a framework for the progressive assignment of pseudo bags based on estimated IIS, encouraging more balanced attention distributions in MIL models. Our extensive experiments on CAMELYON-16, BRACS, TCGA-LUNG, and TCGA-BRCA datasets show our method's superiority over existing state-of-the-art approaches, offering enhanced interpretability and class-wise insights. Our source code is available at https://github.com/RenaoYan/PMIL.
- Abstract(参考訳): 計算病理学において、全スライディング画像(WSI)分類は、そのギガピクセル解像度と制限された細かいアノテーションのため、非常に難しい課題である。
MIL(Multiple-instance Learning)は、弱教師付きソリューションを提供するが、バッグレベルのラベルからインスタンスレベルの情報を精査することは依然として困難である。
従来のMIL手法の多くは、注目スコアを用いて、スライドラベルの予測に寄与するインスタンス重要度スコア(IIS)を推定するが、これらは、重要なインスタンスを特定する際に注意分布や不正確な結果をもたらすことが多い。
これらの問題に対処するため、我々は協調ゲーム理論に着想を得た新しいアプローチを提案し、各インスタンスの寄与度を評価するためにシェープリー値を用いることにより、IIS推定を改善する。
その後、Shapley値の計算を注意して高速化し、強化されたインスタンス識別と優先順位付けを維持した。
さらに、推定IISに基づく疑似バッグのプログレッシブ割り当てのためのフレームワークを導入し、MILモデルにおけるよりバランスのとれた注意分布を奨励する。
CAMELYON-16, BRACS, TCGA-LUNG, TCGA-BRCAデータセットに関する広範な実験により, 既存の最先端アプローチよりもメソッドの優位性を示し, 解釈可能性の向上とクラスワイドインサイトを提供する。
ソースコードはhttps://github.com/RenaoYan/PMIL.comで公開されています。
関連論文リスト
- MergeUp-augmented Semi-Weakly Supervised Learning for WSI Classification [1.2387547097768696]
多重インスタンス学習(MIL)は、WSI分類のための弱い教師付き学習手法である。
機能拡張技術であるMergeUpを導入し、低優先度のバッグをマージしてカテゴリ間情報を強化する。
CAMELYON-16, BRACS, TCGA-LUNGデータセットによる実験結果から, 既存の最先端手法よりも本手法の方が優れていることが示された。
論文 参考訳(メタデータ) (2024-08-23T04:08:30Z) - Attention Is Not What You Need: Revisiting Multi-Instance Learning for Whole Slide Image Classification [51.95824566163554]
我々は,標準MIL仮定と変分推論を相乗化することにより,スプリアス相関ではなく腫瘍形態学に焦点を合わせることができると主張している。
また, ハードインスタンスの識別に優れた分類境界を実現し, バッグとラベルの相互関係を緩和する。
論文 参考訳(メタデータ) (2024-08-18T12:15:22Z) - Efficient Prompt Tuning of Large Vision-Language Model for Fine-Grained
Ship Classification [62.425462136772666]
リモートセンシング(RS-FGSC)における船のきめ細かい分類は、クラス間の高い類似性とラベル付きデータの限られた可用性のために大きな課題となる。
大規模な訓練済みビジョンランゲージモデル(VLM)の最近の進歩は、少数ショット学習やゼロショット学習において印象的な能力を示している。
本研究は, 船種別分類精度を高めるために, VLMの可能性を生かしたものである。
論文 参考訳(メタデータ) (2024-03-13T05:48:58Z) - Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based
Constraints [19.897181782914437]
本稿では,ロジット値の等式制約に基づく基本的かつ単純な解を提案し,強制制約と罰則の重みを明示的に制御する。
我々のアプローチは、広範囲のディープセグメンテーションネットワークのトレーニングに利用できる。
論文 参考訳(メタデータ) (2024-01-25T19:46:57Z) - Slot-Mixup with Subsampling: A Simple Regularization for WSI
Classification [13.286360560353936]
全スライド画像 (WSI) の分類は, がんの診断に関係のある症例は少ないが, 病理医には繰り返しズームイン, アウトが必要である。
パッチレベルのラベルがないため、多重インスタンス学習(MIL)はWSI分類器をトレーニングするための一般的なプラクティスである。
MIL for WSIsの課題の1つは、スライドレベルのラベルから来る弱い監督力であり、しばしば過度なオーバーフィッティングをもたらすことである。
我々のアプローチは、元のスライドの基盤となるセマンティクスを著しく変更することなく、WSIのパッチのサブセットをサンプリングすることで、トレーニングデータセットを強化します。
論文 参考訳(メタデータ) (2023-11-29T09:18:39Z) - Enlarging Instance-specific and Class-specific Information for Open-set
Action Recognition [47.69171542776917]
よりリッチなセマンティックな多様性を持つ機能は、同じ不確実性スコアの下で、オープンセットのパフォーマンスを著しく向上させることができる。
よりIS情報を保持するために、インスタンスの分散を同じクラス内に保持するために、新しいPSLフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-03-25T04:07:36Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Active Pointly-Supervised Instance Segmentation [106.38955769817747]
アクティブポイント制御型インスタンスセグメンテーション(APIS)という,経済的なアクティブな学習環境を提案する。
APISはボックスレベルのアノテーションから始まり、ボックス内のポイントを反復的にサンプリングし、オブジェクトに落ちているかどうかを問う。
これらの戦略で開発されたモデルは、挑戦的なMS-COCOデータセットに対して一貫したパフォーマンス向上をもたらす。
論文 参考訳(メタデータ) (2022-07-23T11:25:24Z) - Feature Re-calibration based MIL for Whole Slide Image Classification [7.92885032436243]
全スライド画像(WSI)分類は疾患の診断と治療の基本的な課題である。
本稿では,WSI バッグ (インスタンス) の分布を,最大インスタンス (クリティカル) 特性の統計値を用いて再校正することを提案する。
位置符号化モジュール(PEM)を用いて空間・形態情報をモデル化し,マルチヘッド自己アテンション(PSMA)をトランスフォーマーエンコーダでプーリングする。
論文 参考訳(メタデータ) (2022-06-22T07:00:39Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。