論文の概要: Trust your neighbours: Penalty-based constraints for model calibration
- arxiv url: http://arxiv.org/abs/2303.06268v2
- Date: Sat, 13 Jan 2024 19:17:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 03:24:55.034587
- Title: Trust your neighbours: Penalty-based constraints for model calibration
- Title(参考訳): 近所の人を信頼する: ペナルティに基づくモデル校正の制約
- Authors: Balamurali Murugesan, Sukesh Adiga V, Bingyuan Liu, Herv\'e Lombaert,
Ismail Ben Ayed, and Jose Dolz
- Abstract要約: SVLSの制約付き最適化の観点を示し、周辺画素のソフトクラス比に暗黙の制約を課すことを示した。
本稿では,ロジット値の等式制約に基づく基本的かつ単純な解を提案し,強制制約と罰則の重みを明示的に制御する。
- 参考スコア(独自算出の注目度): 19.437451462590108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring reliable confidence scores from deep networks is of pivotal
importance in critical decision-making systems, notably in the medical domain.
While recent literature on calibrating deep segmentation networks has led to
significant progress, their uncertainty is usually modeled by leveraging the
information of individual pixels, which disregards the local structure of the
object of interest. In particular, only the recent Spatially Varying Label
Smoothing (SVLS) approach addresses this issue by softening the pixel label
assignments with a discrete spatial Gaussian kernel. In this work, we first
present a constrained optimization perspective of SVLS and demonstrate that it
enforces an implicit constraint on soft class proportions of surrounding
pixels. Furthermore, our analysis shows that SVLS lacks a mechanism to balance
the contribution of the constraint with the primary objective, potentially
hindering the optimization process. Based on these observations, we propose a
principled and simple solution based on equality constraints on the logit
values, which enables to control explicitly both the enforced constraint and
the weight of the penalty, offering more flexibility. Comprehensive experiments
on a variety of well-known segmentation benchmarks demonstrate the superior
performance of the proposed approach.
- Abstract(参考訳): ディープネットワークによる信頼性の高い信頼性スコアの確保は、重要な意思決定システム、特に医療領域において重要な意味を持つ。
ディープセグメンテーションネットワークの校正に関する最近の文献は大きな進歩をもたらしたが、その不確実性は通常、興味の対象の局所構造を無視する個々のピクセルの情報を活用することによってモデル化される。
特に、最近のSVLS(Spatially Varying Label Smoothing)アプローチは、画素ラベル割り当てを離散空間ガウスカーネルで軟化することでこの問題に対処している。
本研究では,SVLSの制約付き最適化の視点をまず提示し,周辺画素のソフトクラス比に暗黙の制約を課すことを示した。
さらに,本解析の結果から,svlsには制約の寄与と目的のバランスをとるメカニズムが欠如しており,最適化プロセスに支障をきたす可能性がある。
そこで本研究では,ロジット値の等式制約に基づく原理的かつ簡単な解法を提案し,強制された制約とペナルティの重みを明示的に制御し,より柔軟性を提供する。
様々な有名なセグメンテーションベンチマークに関する包括的な実験は、提案手法の優れた性能を示している。
関連論文リスト
- Federated Smoothing Proximal Gradient for Quantile Regression with Non-Convex Penalties [3.269165283595478]
IoT(Internet-of-Things)の分散センサーは、大量のスパースデータを生成する。
本稿では, 滑らか化機構をそのビューに統合し, 精度と計算速度を両立させる, 結合型滑らか化近位勾配(G)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-10T21:50:19Z) - Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based
Constraints [19.897181782914437]
本稿では,ロジット値の等式制約に基づく基本的かつ単純な解を提案し,強制制約と罰則の重みを明示的に制御する。
我々のアプローチは、広範囲のディープセグメンテーションネットワークのトレーニングに利用できる。
論文 参考訳(メタデータ) (2024-01-25T19:46:57Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
本稿では,レイヤワイドパラメータのオーバーライトや決定境界の歪みに起因する,概念的にシンプルで効果的な手法を提案する。
提案手法は,ゼロの指数バッファと1.02倍の差が絶対的に優れていても,競争精度が向上する。
論文 参考訳(メタデータ) (2024-01-17T09:01:29Z) - Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
DNN(Deep Neural Networks)の正規化は、一般化性の向上とオーバーフィッティングの防止に不可欠である。
制約付き最適化問題としてトレーニングプロセスのフレーミングによるDNN正規化に対する新しいアプローチを提案する。
我々はAugmented Lagrangian (SAL) 法を用いて、より柔軟で効率的な正規化機構を実現する。
論文 参考訳(メタデータ) (2023-10-25T13:55:35Z) - Exploiting Low-confidence Pseudo-labels for Source-free Object Detection [54.98300313452037]
Source-free Object Detection (SFOD) は、ラベル付きソースデータにアクセスすることなく、未ラベルのターゲットドメインにソーストレーニングされた検出器を適応することを目的としている。
現在のSFOD法は適応相におけるしきい値に基づく擬似ラベル手法を用いる。
疑似ラベルを最大限に活用するために,高信頼度と低信頼度しきい値を導入する手法を提案する。
論文 参考訳(メタデータ) (2023-10-19T12:59:55Z) - Tight Certified Robustness via Min-Max Representations of ReLU Neural
Networks [9.771011198361865]
制御システムにニューラルネットワークを確実に配置するには、厳格な堅牢性を保証する必要がある。
本稿では,ReLUニューラルネットワークの凸表現に対する強靭性証明を得る。
論文 参考訳(メタデータ) (2023-10-07T21:07:45Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Uncertainty-aware LiDAR Panoptic Segmentation [21.89063036529791]
本稿では,LiDAR点雲を用いた不確実性を考慮したパノプティックセグメンテーションの課題を解決するための新しいアプローチを提案する。
提案するEvLPSNetネットワークは,この課題をサンプリング不要で効率的に解決する最初の方法である。
我々は、最先端のパン光学セグメンテーションネットワークとサンプリング不要不確実性推定技術を組み合わせた、いくつかの強力なベースラインを提供する。
論文 参考訳(メタデータ) (2022-10-10T07:54:57Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Linear Stochastic Bandits over a Bit-Constrained Channel [37.01818450308119]
我々は,ビット制約チャネル上に線形バンドレットの新たな定式化を導入する。
サーバの目標は、未知のモデルパラメータの推定値に基づいてアクションを取ることで、累積的後悔を最小限に抑えることである。
未知のモデルが$d$-dimensionalである場合、チャネル容量は$O(d)$ bits suffices で順序最適後悔を実現する。
論文 参考訳(メタデータ) (2022-03-02T15:54:03Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。