論文の概要: A Review of Hybrid and Ensemble in Deep Learning for Natural Language Processing
- arxiv url: http://arxiv.org/abs/2312.05589v2
- Date: Thu, 8 Aug 2024 07:15:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 20:47:48.993160
- Title: A Review of Hybrid and Ensemble in Deep Learning for Natural Language Processing
- Title(参考訳): 自然言語処理におけるハイブリッド・アンサンブルの検討
- Authors: Jianguo Jia, Wen Liang, Youzhi Liang,
- Abstract要約: レビューでは、各タスクを体系的に導入し、キーアーキテクチャをリカレントニューラルネットワーク(RNN)からBERTのようなトランスフォーマーベースのモデルに記述する。
アンサンブル技術の適用性を強調し、様々なNLPアプリケーションを強化する能力を強調している。
計算オーバーヘッド、オーバーフィッティング、モデル解釈複雑性などの実装上の課題に対処する。
- 参考スコア(独自算出の注目度): 0.5266869303483376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This review presents a comprehensive exploration of hybrid and ensemble deep learning models within Natural Language Processing (NLP), shedding light on their transformative potential across diverse tasks such as Sentiment Analysis, Named Entity Recognition, Machine Translation, Question Answering, Text Classification, Generation, Speech Recognition, Summarization, and Language Modeling. The paper systematically introduces each task, delineates key architectures from Recurrent Neural Networks (RNNs) to Transformer-based models like BERT, and evaluates their performance, challenges, and computational demands. The adaptability of ensemble techniques is emphasized, highlighting their capacity to enhance various NLP applications. Challenges in implementation, including computational overhead, overfitting, and model interpretation complexities, are addressed alongside the trade-off between interpretability and performance. Serving as a concise yet invaluable guide, this review synthesizes insights into tasks, architectures, and challenges, offering a holistic perspective for researchers and practitioners aiming to advance language-driven applications through ensemble deep learning in NLP.
- Abstract(参考訳): 本稿では、自然言語処理(NLP)におけるハイブリッド・アンサンブル深層学習モデルの総合的な探索を行い、感性分析、名前付きエンティティ認識、機械翻訳、問合せ回答、テキスト分類、生成、音声認識、要約、言語モデリングなどの様々なタスクにおいて、それらの変換可能性に光を当てる。
本稿では,各タスクを体系的に導入し,主要なアーキテクチャをリカレントニューラルネットワーク(RNN)からBERTなどのトランスフォーマーベースモデルに記述し,その性能,課題,計算要求を評価する。
アンサンブル技術の適用性を強調し、様々なNLPアプリケーションを強化する能力を強調している。
計算オーバーヘッド、オーバーフィッティング、モデル解釈複雑性などの実装上の課題は、解釈可能性と性能のトレードオフと共に解決される。
簡潔で価値の低いガイドとして、このレビューは、タスク、アーキテクチャ、課題に関する洞察を合成し、NLPの深層学習をアンサンブルすることで、言語駆動アプリケーションを前進させようとする研究者や実践者に対して、総合的な視点を提供する。
関連論文リスト
- ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers [1.6541870997607049]
変換器の高度な特徴抽出機能を備えた大規模言語モデルの非並列的文脈理解を融合したアーキテクチャであるARPAを提案する。
ARPAの導入は、視覚的単語の曖昧さにおいて重要なマイルストーンであり、魅力的なソリューションを提供する。
我々は研究者や実践者たちに、このようなハイブリッドモデルが人工知能の先例のない進歩を後押しする未来を想像して、我々のモデルの能力を探求するよう依頼する。
論文 参考訳(メタデータ) (2024-08-12T10:15:13Z) - Inference Optimizations for Large Language Models: Effects, Challenges, and Practical Considerations [0.0]
大規模な言語モデルは自然言語処理においてユビキタスである。
本稿では,資源要件の低減と大規模言語モデルの圧縮に関する諸技術について概説する。
論文 参考訳(メタデータ) (2024-08-06T12:07:32Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - Is English the New Programming Language? How About Pseudo-code Engineering? [0.0]
本研究では,OpenAIの指導的言語モデルであるChatGPTに異なる入力形式がどのような影響を及ぼすかを検討する。
それは、意図、解釈可能性、完全性、創造性の4つのカテゴリにまたがるモデルの習熟度を調べる。
論文 参考訳(メタデータ) (2024-04-08T16:28:52Z) - Surveying the Landscape of Text Summarization with Deep Learning: A
Comprehensive Review [2.4185510826808487]
ディープラーニングは、言語データの複雑な表現を学習できるモデルの開発を可能にすることによって、自然言語処理(NLP)に革命をもたらした。
NLPのディープラーニングモデルは、通常、大量のデータを使用してディープニューラルネットワークをトレーニングし、言語データ内のパターンと関係を学習する。
テキスト要約にディープラーニングを適用することは、テキスト要約タスクを実行するためにディープニューラルネットワークを使用することを指す。
論文 参考訳(メタデータ) (2023-10-13T21:24:37Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Self-Convinced Prompting: Few-Shot Question Answering with Repeated
Introspection [13.608076739368949]
本稿では,大規模事前学習型言語モデルの可能性を活用する新しいフレームワークを提案する。
我々のフレームワークは、典型的な数発の連鎖プロンプトの出力を処理し、応答の正しさを評価し、回答を精査し、最終的には新しい解を生成する。
論文 参考訳(メタデータ) (2023-10-08T06:36:26Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - TextFlint: Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing [73.16475763422446]
NLPタスク(TextFlint)のための多言語ロバスト性評価プラットフォームを提案する。
普遍的なテキスト変換、タスク固有の変換、敵攻撃、サブポピュレーション、およびそれらの組み合わせを取り入れ、包括的な堅牢性分析を提供する。
TextFlintは、モデルの堅牢性の欠点に対処するために、完全な分析レポートとターゲットとした拡張データを生成します。
論文 参考訳(メタデータ) (2021-03-21T17:20:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。