NiSNN-A: Non-iterative Spiking Neural Networks with Attention with
Application to Motor Imagery EEG Classification
- URL: http://arxiv.org/abs/2312.05643v1
- Date: Sat, 9 Dec 2023 19:13:15 GMT
- Title: NiSNN-A: Non-iterative Spiking Neural Networks with Attention with
Application to Motor Imagery EEG Classification
- Authors: Chuhan Zhang, Wei Pan, Cosimo Della Santina
- Abstract summary: Motor imagery is an important category in electroencephalogram (EEG) research.
Traditional deep learning algorithms are characterized by significant computational demands and high energy usage.
Spiked neural networks (SNNs) emerge as a promising energy-efficient solution.
- Score: 7.430549997480745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motor imagery, an important category in electroencephalogram (EEG) research,
often intersects with scenarios demanding low energy consumption, such as
portable medical devices and isolated environment operations. Traditional deep
learning algorithms, despite their effectiveness, are characterized by
significant computational demands accompanied by high energy usage. As an
alternative, spiking neural networks (SNNs), inspired by the biological
functions of the brain, emerge as a promising energy-efficient solution.
However, SNNs typically exhibit lower accuracy than their counterpart
convolutional neural networks (CNNs). Although attention mechanisms
successfully increase network accuracy by focusing on relevant features, their
integration in the SNN framework remains an open question. In this work, we
combine the SNN and the attention mechanisms for the EEG classification, aiming
to improve precision and reduce energy consumption. To this end, we first
propose a Non-iterative Leaky Integrate-and-Fire (LIF) neuron model, overcoming
the gradient issues in the traditional SNNs using the Iterative LIF neurons.
Then, we introduce the sequence-based attention mechanisms to refine the
feature map. We evaluated the proposed Non-iterative SNN with Attention
(NiSNN-A) model on OpenBMI, a large-scale motor imagery dataset. Experiment
results demonstrate that 1) our model outperforms other SNN models by achieving
higher accuracy, 2) our model increases energy efficiency compared to the
counterpart CNN models (i.e., by 2.27 times) while maintaining comparable
accuracy.
Related papers
- Fully Spiking Denoising Diffusion Implicit Models [61.32076130121347]
Spiking neural networks (SNNs) have garnered considerable attention owing to their ability to run on neuromorphic devices with super-high speeds.
We propose a novel approach fully spiking denoising diffusion implicit model (FSDDIM) to construct a diffusion model within SNNs.
We demonstrate that the proposed method outperforms the state-of-the-art fully spiking generative model.
arXiv Detail & Related papers (2023-12-04T09:07:09Z) - Enabling energy-Efficient object detection with surrogate gradient
descent in spiking neural networks [0.40054215937601956]
Spiking Neural Networks (SNNs) are a biologically plausible neural network model with significant advantages in both event-driven processing and processing-temporal information.
In this study, we introduce the Current Mean Decoding (CMD) method, which solves the regression problem to facilitate the training of deep SNNs for object detection tasks.
Based on the gradient surrogate and CMD, we propose the SNN-YOLOv3 model for object detection.
arXiv Detail & Related papers (2023-09-07T15:48:00Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Spikformer: When Spiking Neural Network Meets Transformer [102.91330530210037]
We consider two biologically plausible structures, the Spiking Neural Network (SNN) and the self-attention mechanism.
We propose a novel Spiking Self Attention (SSA) as well as a powerful framework, named Spiking Transformer (Spikformer)
arXiv Detail & Related papers (2022-09-29T14:16:49Z) - tinySNN: Towards Memory- and Energy-Efficient Spiking Neural Networks [14.916996986290902]
Spiking Neural Network (SNN) models are typically favorable as they can offer higher accuracy.
However, employing such models on the resource- and energy-constrained embedded platforms is inefficient.
We present a tinySNN framework that optimize the memory and energy requirements of SNN processing.
arXiv Detail & Related papers (2022-06-17T09:40:40Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
Spiking neural networks (SNNs) offer both compelling potential advantages, including energy efficiency and low latencies.
One promising area for high performance SNNs is template matching and image recognition.
This research introduces the first high performance SNN for the Visual Place Recognition (VPR) task.
arXiv Detail & Related papers (2021-09-14T05:40:40Z) - Accurate and efficient time-domain classification with adaptive spiking
recurrent neural networks [1.8515971640245998]
Spiking neural networks (SNNs) have been investigated as more biologically plausible and potentially more powerful models of neural computation.
We show how a novel surrogate gradient combined with recurrent networks of tunable and adaptive spiking neurons yields state-of-the-art for SNNs.
arXiv Detail & Related papers (2021-03-12T10:27:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNN is the first deep SNN tracker that achieves short latency and low precision loss on the visual object tracking benchmarks OTB2013, VOT2016, and GOT-10k.
SiamSNN notably achieves low energy consumption and real-time on Neuromorphic chip TrueNorth.
arXiv Detail & Related papers (2020-03-17T08:49:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.