論文の概要: Beyond Gradient and Priors in Privacy Attacks: Leveraging Pooler Layer
Inputs of Language Models in Federated Learning
- arxiv url: http://arxiv.org/abs/2312.05720v3
- Date: Wed, 13 Mar 2024 11:19:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 17:58:34.062807
- Title: Beyond Gradient and Priors in Privacy Attacks: Leveraging Pooler Layer
Inputs of Language Models in Federated Learning
- Title(参考訳): プライバシ攻撃におけるグラディエントと優先事項の超越 - プールレイヤの活用
フェデレーション学習における言語モデルの入力
- Authors: Jianwei Li, Sheng Liu, Qi Lei
- Abstract要約: 本稿では,現代言語モデルのアーキテクチャの脆弱性を狙う2段階のプライバシ攻撃戦略を提案する。
比較実験は、様々なデータセットやシナリオで優れた攻撃性能を示す。
私たちは、大きな言語モデルの設計において、これらの潜在的なプライバシーリスクを認識し、対処するようコミュニティに呼びかけます。
- 参考スコア(独自算出の注目度): 27.03994310867473
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Language models trained via federated learning (FL) demonstrate impressive
capabilities in handling complex tasks while protecting user privacy. Recent
studies indicate that leveraging gradient information and prior knowledge can
potentially reveal training samples within FL setting. However, these
investigations have overlooked the potential privacy risks tied to the
intrinsic architecture of the models. This paper presents a two-stage privacy
attack strategy that targets the vulnerabilities in the architecture of
contemporary language models, significantly enhancing attack performance by
initially recovering certain feature directions as additional supervisory
signals. Our comparative experiments demonstrate superior attack performance
across various datasets and scenarios, highlighting the privacy leakage risk
associated with the increasingly complex architectures of language models. We
call for the community to recognize and address these potential privacy risks
in designing large language models.
- Abstract(参考訳): FL(Federated Learning)を通じてトレーニングされた言語モデルは、ユーザのプライバシ保護による複雑なタスクの処理において、優れた機能を示している。
近年の研究では、勾配情報と事前知識を活用することで、FL設定内のトレーニングサンプルが明らかになる可能性が示唆されている。
しかし、これらの調査は、モデル固有のアーキテクチャに関連する潜在的なプライバシーリスクを見落としている。
本稿では,現代言語モデルのアーキテクチャの脆弱性を狙った2段階のプライバシ攻撃戦略を提案する。
比較実験では、さまざまなデータセットやシナリオに対して優れた攻撃性能を示し、言語モデルの複雑化に伴うプライバシリークのリスクを強調した。
私たちは、大きな言語モデルの設計において、これらの潜在的なプライバシーリスクを認識し、対処するようコミュニティに呼びかけます。
関連論文リスト
- New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
セキュリティとプライバシーの問題は、事前訓練されたモデルに対するユーザーの信頼を損なう。
現在の文献は、事前訓練されたモデルに対する攻撃と防御の明確な分類を欠いている。
この分類法は、攻撃と防御をNo-Change、Input-Change、Model-Changeアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-12T10:15:33Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - Unique Security and Privacy Threats of Large Language Model: A Comprehensive Survey [46.19229410404056]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げた。
これらのモデルは、強力な言語理解と生成能力を示すために、広大なデータセットでトレーニングされている。
プライバシーとセキュリティの問題は、そのライフサイクルを通じて明らかになっている。
論文 参考訳(メタデータ) (2024-06-12T07:55:32Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - SoK: Reducing the Vulnerability of Fine-tuned Language Models to
Membership Inference Attacks [1.03590082373586]
我々は,大規模言語モデルのメンバシップ推論攻撃に対する脆弱性について,初めて体系的なレビューを行った。
これらの攻撃に対して最高のプライバシー保護を実現するために、差分プライバシーと低ランク適応器を組み合わせることで、いくつかのトレーニング手法がプライバシーリスクを著しく低減することを発見した。
論文 参考訳(メタデータ) (2024-03-13T12:46:51Z) - Membership Inference Attacks and Privacy in Topic Modeling [3.503833571450681]
トレーニングデータのメンバーを確実に識別できるトピックモデルに対する攻撃を提案する。
本稿では,DP語彙選択を前処理ステップとして組み込んだプライベートトピックモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T12:43:42Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。