論文の概要: Tokens for Learning, Tokens for Unlearning: Mitigating Membership Inference Attacks in Large Language Models via Dual-Purpose Training
- arxiv url: http://arxiv.org/abs/2502.19726v1
- Date: Thu, 27 Feb 2025 03:37:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:58:59.196279
- Title: Tokens for Learning, Tokens for Unlearning: Mitigating Membership Inference Attacks in Large Language Models via Dual-Purpose Training
- Title(参考訳): 学習のためのトークン、学習のためのトークン:二重目的学習による大規模言語モデルにおけるメンバーシップ推論攻撃の軽減
- Authors: Toan Tran, Ruixuan Liu, Li Xiong,
- Abstract要約: 大規模言語モデル(LLM)は、現代の自然言語処理のバックボーンとなっているが、センシティブなトレーニングデータの漏洩に関するプライバシー上の懸念を生じさせている。
本稿では,トークン固有の特徴を利用して,言語モデリングのトレーニングデータを保護する軽量かつ効果的な経験的プライバシ保護を提案する。
- 参考スコア(独自算出の注目度): 13.680205342714412
- License:
- Abstract: Large language models (LLMs) have become the backbone of modern natural language processing but pose privacy concerns about leaking sensitive training data. Membership inference attacks (MIAs), which aim to infer whether a sample is included in a model's training dataset, can serve as a foundation for broader privacy threats. Existing defenses designed for traditional classification models do not account for the sequential nature of text data. As a result, they either require significant computational resources or fail to effectively mitigate privacy risks in LLMs. In this work, we propose a lightweight yet effective empirical privacy defense for protecting training data of language modeling by leveraging the token-specific characteristics. By analyzing token dynamics during training, we propose a token selection strategy that categorizes tokens into hard tokens for learning and memorized tokens for unlearning. Subsequently, our training-phase defense optimizes a novel dual-purpose token-level loss to achieve a Pareto-optimal balance between utility and privacy. Extensive experiments demonstrate that our approach not only provides strong protection against MIAs but also improves language modeling performance by around 10\% across various LLM architectures and datasets compared to the baselines.
- Abstract(参考訳): 大規模言語モデル(LLM)は、現代の自然言語処理のバックボーンとなっているが、センシティブなトレーニングデータの漏洩に関するプライバシー上の懸念を生じさせている。
モデルのトレーニングデータセットにサンプルが含まれているかどうかを推測することを目的としたメンバシップ推論攻撃(MIA)は、より広範なプライバシ脅威の基盤として機能する。
従来の分類モデルのために設計された既存の防御は、テキストデータのシーケンシャルな性質を考慮しない。
結果として、それらはかなりの計算資源を必要とするか、LLMのプライバシーリスクを効果的に軽減できないかのどちらかである。
本研究では,トークン固有の特徴を活用して,言語モデリングのトレーニングデータを保護する軽量かつ効果的な経験的プライバシ保護を提案する。
学習中のトークン動態を解析することにより,学習用トークンをハードトークンに分類し,未学習用トークンを記憶するトークン選択戦略を提案する。
その後、トレーニングフェーズの防衛は、実用性とプライバシのパレート最適バランスを達成するために、新しい2目的トークンレベルの損失を最適化する。
大規模な実験により、我々のアプローチはMIAに対して強力な保護を提供するだけでなく、様々なLLMアーキテクチャやデータセットをベースラインと比較して、言語モデリング性能を約10倍改善することを示した。
関連論文リスト
- Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review(LFR)は、モデルの学習進捗に適応する動的トレーニングアプローチである。
LFRは、データブロック(トークンのシーケンス)にわたるモデルの学習パフォーマンスを追跡し、データセットの困難な領域を再検討する。
フルデータセットでトレーニングされたベースラインモデルと比較して、LFRは一貫して低いパープレキシティと高い精度を達成した。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - Protecting Privacy Through Approximating Optimal Parameters for Sequence Unlearning in Language Models [37.172662930947446]
言語モデル(LM)は、重大なプライバシーリスクを示す抽出攻撃に対して潜在的に脆弱である。
本稿では,事前学習したLMからターゲットトークンシーケンスを効果的に忘れる新しい未学習手法である,最適パラメータによるプライバシ保護(POP)を提案する。
POPは、9つの分類と4つのダイアログベンチマークにまたがって、保留後の顕著なパフォーマンスを示し、最先端を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2024-06-20T08:12:49Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
大規模な言語モデル(LLM)は、ダウンストリームタスク間で印象的なパフォーマンスを達成するために、広範囲のラベル付きデータセットとトレーニング計算を必要とすることが多い。
本稿では,LLMが独自ラベルを自動でキュレートし,未知のデータサンプルを選択的に学習する自己学習パラダイムについて検討する。
経験的評価は、複数の被験者にまたがる世代における幻覚の減少に有意な改善を示した。
論文 参考訳(メタデータ) (2024-06-17T07:25:09Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Recovering from Privacy-Preserving Masking with Large Language Models [14.828717714653779]
マスク付きトークンの代わりに大きな言語モデル(LLM)を提案する。
難読化コーパスでトレーニングしたモデルが,元のデータでトレーニングしたモデルと同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-09-12T16:39:41Z) - Preference-grounded Token-level Guidance for Language Model Fine-tuning [99.93045967478764]
好みのある言語モデルを調整することは、自然言語生成において重要な問題である。
LMトレーニングでは、教師付きデータの量に基づいて、学習指導を利用する2つの最小限の学習目標を示す。
実験において,本手法は2つの異なるLMタスクに対して競合的に動作する。
論文 参考訳(メタデータ) (2023-06-01T07:00:07Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - Training Data Leakage Analysis in Language Models [6.843491191969066]
本稿では,強大かつ現実的な脅威モデルの下で漏洩する可能性のあるトレーニングデータ中のユーザコンテンツを識別する手法を提案する。
本研究では,トレーニングデータに固有の文断片を生成するモデルの能力を測定することにより,ユーザレベルのデータ漏洩を定量化する2つの指標を提案する。
論文 参考訳(メタデータ) (2021-01-14T00:57:32Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Effective Unsupervised Domain Adaptation with Adversarially Trained
Language Models [54.569004548170824]
注意的なマスキング戦略は、マスキングされた言語モデルの知識ギャップを橋渡しできることを示す。
本稿では,これらのトークンを逆さまにマスキングすることで効果的なトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-10-05T01:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。