Detecting Toxic Flow
- URL: http://arxiv.org/abs/2312.05827v1
- Date: Sun, 10 Dec 2023 09:00:09 GMT
- Title: Detecting Toxic Flow
- Authors: \'Alvaro Cartea, Gerardo Duran-Martin, Leandro S\'anchez-Betancourt
- Abstract summary: This paper develops a framework to predict toxic trades that a broker receives from her clients.
We use a proprietary dataset of foreign exchange transactions to test our methodology.
We devise a strategy for the broker who uses toxicity predictions to internalise or to externalise each trade received from her clients.
- Score: 0.40964539027092917
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper develops a framework to predict toxic trades that a broker
receives from her clients. Toxic trades are predicted with a novel online
Bayesian method which we call the projection-based unification of last-layer
and subspace estimation (PULSE). PULSE is a fast and statistically-efficient
online procedure to train a Bayesian neural network sequentially. We employ a
proprietary dataset of foreign exchange transactions to test our methodology.
PULSE outperforms standard machine learning and statistical methods when
predicting if a trade will be toxic; the benchmark methods are logistic
regression, random forests, and a recursively-updated maximum-likelihood
estimator. We devise a strategy for the broker who uses toxicity predictions to
internalise or to externalise each trade received from her clients. Our
methodology can be implemented in real-time because it takes less than one
millisecond to update parameters and make a prediction. Compared with the
benchmarks, PULSE attains the highest PnL and the largest avoided loss for the
horizons we consider.
Related papers
- Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Conservative Predictions on Noisy Financial Data [6.300716661852326]
Price movements in financial markets are well known to be very noisy.
Traditional rule-learning techniques would seek only high precision rules and refrain from making predictions where their antecedents did not apply.
We apply a similar approach, where a model abstains from making a prediction on data points that it is uncertain on.
arXiv Detail & Related papers (2023-10-18T09:14:19Z) - An Offline Learning Approach to Propagator Models [3.1755820123640612]
We consider an offline learning problem for an agent who first estimates an unknown price impact kernel from a static dataset.
We propose a novel approach for a nonparametric estimation of the propagator from a dataset containing correlated price trajectories, trading signals and metaorders.
We show that a trader who tries to minimise her execution costs by using a greedy strategy purely based on the estimated propagator will encounter suboptimality.
arXiv Detail & Related papers (2023-09-06T13:36:43Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
We introduce a novel risk-aware Counterfactual Learning To Rank method with theoretical guarantees for safe deployment.
Our experimental results demonstrate the efficacy of our proposed method, which is effective at avoiding initial periods of bad performance when little data is available.
arXiv Detail & Related papers (2023-04-26T15:54:23Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - DNN-ForwardTesting: A New Trading Strategy Validation using Statistical
Timeseries Analysis and Deep Neural Networks [0.6882042556551609]
We propose a new trading strategy, called DNN-forwardtesting, that determines the strategy to apply by testing it on the possible future predicted by a deep neural network.
Our trading system calculates the most effective technical indicator by applying it to the DNNs predictions and uses such indicator to guide its trades.
arXiv Detail & Related papers (2022-10-20T19:00:59Z) - Learning to Liquidate Forex: Optimal Stopping via Adaptive Top-K
Regression [19.942711817396734]
We consider learning a trading agent acting on behalf of a firm earning revenue in a foreign currency (FC) and incurring expenses in the home currency (HC)
The goal of the agent is to maximize the expected HC at the end of the trading episode by deciding to hold or sell the FC at each time step in the trading episode.
We propose a novel supervised learning approach that learns to forecast the top-K future FX rates instead of forecasting all the future FX rates.
arXiv Detail & Related papers (2022-02-25T09:33:10Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Predicting Status of Pre and Post M&A Deals Using Machine Learning and
Deep Learning Techniques [0.0]
Risk arbitrage or merger arbitrage is an investment strategy that speculates on the success of M&A deals.
Prediction of the deal status in advance is of great importance for risk arbitrageurs.
We present an ML and DL based methodology for takeover success prediction problem.
arXiv Detail & Related papers (2021-08-05T21:26:45Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
We develop an improved method for debiasing predictions and estimating frequentist uncertainty for practical datasets.
Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude.
arXiv Detail & Related papers (2021-03-23T17:48:56Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.