論文の概要: TaBIIC: Taxonomy Building through Iterative and Interactive Clustering
- arxiv url: http://arxiv.org/abs/2312.05866v1
- Date: Sun, 10 Dec 2023 12:17:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-12 18:13:51.341869
- Title: TaBIIC: Taxonomy Building through Iterative and Interactive Clustering
- Title(参考訳): tabiic:反復的およびインタラクティブなクラスタリングによる分類学的構築
- Authors: Mathieu d'Aquin
- Abstract要約: 本稿では,反復的かつインタラクティブなプロセスにおいて,両方のアプローチからインスピレーションを得る方法を検討する。
本稿では,本手法が様々なデータソースに適用可能であることを示し,オントロジーにより直接的に組み込むことができることを示す。
- 参考スコア(独自算出の注目度): 2.817412580574242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building taxonomies is often a significant part of building an ontology, and
many attempts have been made to automate the creation of such taxonomies from
relevant data. The idea in such approaches is either that relevant definitions
of the intension of concepts can be extracted as patterns in the data (e.g. in
formal concept analysis) or that their extension can be built from grouping
data objects based on similarity (clustering). In both cases, the process leads
to an automatically constructed structure, which can either be too coarse and
lacking in definition, or too fined-grained and detailed, therefore requiring
to be refined into the desired taxonomy. In this paper, we explore a method
that takes inspiration from both approaches in an iterative and interactive
process, so that refinement and definition of the concepts in the taxonomy
occur at the time of identifying those concepts in the data. We show that this
method is applicable on a variety of data sources and leads to taxonomies that
can be more directly integrated into ontologies.
- Abstract(参考訳): 分類学を構築することは、しばしばオントロジーを構築する重要な部分であり、関連するデータから分類学を作成するための多くの試みがなされている。
このようなアプローチにおける考え方は、概念のインテンションの関連する定義を、データ内のパターン(例えば形式的概念解析)として抽出することができるか、あるいは類似性(クラスタリング)に基づいてデータオブジェクトをグループ化することによって拡張を構築することができる。
いずれの場合も、プロセスは自動的に構築される構造につながり、大きすぎるか定義に欠ける可能性があるか、きめ細かな細かな細部が多すぎるため、望まれる分類に洗練される必要がある。
本稿では、反復的かつインタラクティブなプロセスにおいて、両方のアプローチからインスピレーションを得る方法について検討し、これらの概念をデータ中に特定する際に、分類学における概念の洗練と定義が生じるようにする。
本稿では,本手法が様々なデータソースに適用可能であることを示し,オントロジーにより直接的に組み込むことができる分類学につながることを示す。
関連論文リスト
- Creating a Fine Grained Entity Type Taxonomy Using LLMs [0.0]
本研究は, GPT-4とその先進的な反復である GPT-4 Turbo が, 詳細な実体型分類学を自律的に開発する可能性について検討する。
我々の目的は、広く分類されたエンティティタイプから始まる包括的な分類体系を構築することである。
この分類は、GPT-4の内部知識ベースを利用して反復的なプロンプト技術によって徐々に洗練される。
論文 参考訳(メタデータ) (2024-02-19T21:32:19Z) - To Classify is to Interpret: Building Taxonomies from Heterogeneous Data
through Human-AI Collaboration [0.39160947065896795]
機械学習(ML)を統合したシステムで分類学の構築を支援する方法について検討する。
本稿では,ユーザが複数のモデルのアウトプットを反復的に考慮できるアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-31T08:24:29Z) - Taxonomy Enrichment with Text and Graph Vector Representations [61.814256012166794]
我々は,既存の分類学に新たな語を加えることを目的とした分類学の豊かさの問題に対処する。
我々は,この課題に対して,少ない労力で高い結果を得られる新しい手法を提案する。
我々は、異なるデータセットにわたる最先端の結果を達成し、ミスの詳細なエラー分析を提供する。
論文 参考訳(メタデータ) (2022-01-21T09:01:12Z) - TaxoCom: Topic Taxonomy Completion with Hierarchical Discovery of Novel
Topic Clusters [57.59286394188025]
我々はTaxoComというトピック分類の完成のための新しい枠組みを提案する。
TaxoComは、用語と文書の新たなサブトピッククラスタを発見する。
2つの実世界のデータセットに関する包括的実験により、TaxoComは、用語の一貫性とトピックカバレッジの観点から、高品質なトピック分類を生成するだけでなく、高品質なトピック分類を生成することを実証した。
論文 参考訳(メタデータ) (2022-01-18T07:07:38Z) - Large-scale Taxonomy Induction Using Entity and Word Embeddings [13.30719395448771]
本論文では,実体とテキスト埋め込みを用いた知識からの自動推定抽出手法 TIEmb を提案する。
本稿では,Wide Web の大部分から抽出されたクラス置換関係のデータベースである WebIsA データベースにアプローチを適用し,Person and Place ドメインの階層を抽出する。
論文 参考訳(メタデータ) (2021-05-04T05:53:12Z) - Who Should Go First? A Self-Supervised Concept Sorting Model for
Improving Taxonomy Expansion [50.794640012673064]
データとビジネスの範囲が実際のアプリケーションで拡大するにつれ、既存の概念を組み込むために拡張する必要がある。
分類学の拡張に関する以前の研究は、新しい概念を独立して同時に処理し、それらの間の潜在的な関係と操作を挿入する適切な順序を無視します。
本稿では,新しい概念の中で局所ハイパーニム・ハイプニム構造を同時に発見し,挿入順序を決定する新しい自己教師付きフレームワークであるtaxoorderを提案する。
論文 参考訳(メタデータ) (2021-04-08T11:00:43Z) - CoRel: Seed-Guided Topical Taxonomy Construction by Concept Learning and
Relation Transferring [37.1330815281983]
本稿では,概念名によって記述された種子分類を入力としてコーパスと種分類を取り入れた種誘導型地域分類構築法を提案する。
関係伝達モジュールは、複数の経路に沿ってユーザの興味ある関係を学習し、転送し、種分類構造を幅と深さで拡張する。
概念学習モジュールは、分類学を共同で埋め込むことで、各概念ノードのセマンティクスを豊かにする。
論文 参考訳(メタデータ) (2020-10-13T22:00:31Z) - Octet: Online Catalog Taxonomy Enrichment with Self-Supervision [67.26804972901952]
オンラインカタログエンリッチメンTのための自己教師型エンドツーエンドフレームワークOctopを提案する。
本稿では,用語抽出のためのシーケンスラベリングモデルをトレーニングし,分類構造を捉えるためにグラフニューラルネットワーク(GNN)を用いることを提案する。
Octetは、オンラインカタログを、オープンワールド評価の2倍に強化する。
論文 参考訳(メタデータ) (2020-06-18T04:53:07Z) - Petri Nets with Parameterised Data: Modelling and Verification (Extended
Version) [67.99023219822564]
我々は、カタログネットと呼ばれるカラーペトリネットの拡張を紹介し、研究し、このタイプのプロセスを捉える2つの重要な特徴を提供する。
我々は、新しい価値注入が特に扱いにくい機能であることを示し、それを改ざんするための戦略について議論する。
論文 参考訳(メタデータ) (2020-06-11T17:26:08Z) - TaxoExpan: Self-supervised Taxonomy Expansion with Position-Enhanced
Graph Neural Network [62.12557274257303]
分類学は機械解釈可能な意味論から成り、多くのウェブアプリケーションに貴重な知識を提供する。
そこで我々は,既存の分類学から,クエリの集合を自動生成するTaxoExpanという,新しい自己教師型フレームワークを提案する。
本研究では,(1)既存の分類学におけるアンカー概念の局所構造を符号化する位置強調グラフニューラルネットワーク,(2)学習モデルが自己超越データにおけるラベルノイズに敏感になるようなノイズローバスト学習の2つの手法を開発する。
論文 参考訳(メタデータ) (2020-01-26T21:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。