論文の概要: Creating a Fine Grained Entity Type Taxonomy Using LLMs
- arxiv url: http://arxiv.org/abs/2402.12557v1
- Date: Mon, 19 Feb 2024 21:32:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 17:59:54.027182
- Title: Creating a Fine Grained Entity Type Taxonomy Using LLMs
- Title(参考訳): llmsを用いた細粒度エンティティ型分類法の作成
- Authors: Michael Gunn, Dohyun Park, Nidhish Kamath
- Abstract要約: 本研究は, GPT-4とその先進的な反復である GPT-4 Turbo が, 詳細な実体型分類学を自律的に開発する可能性について検討する。
我々の目的は、広く分類されたエンティティタイプから始まる包括的な分類体系を構築することである。
この分類は、GPT-4の内部知識ベースを利用して反復的なプロンプト技術によって徐々に洗練される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we investigate the potential of GPT-4 and its advanced
iteration, GPT-4 Turbo, in autonomously developing a detailed entity type
taxonomy. Our objective is to construct a comprehensive taxonomy, starting from
a broad classification of entity types - including objects, time, locations,
organizations, events, actions, and subjects - similar to existing manually
curated taxonomies. This classification is then progressively refined through
iterative prompting techniques, leveraging GPT-4's internal knowledge base. The
result is an extensive taxonomy comprising over 5000 nuanced entity types,
which demonstrates remarkable quality upon subjective evaluation.
We employed a straightforward yet effective prompting strategy, enabling the
taxonomy to be dynamically expanded. The practical applications of this
detailed taxonomy are diverse and significant. It facilitates the creation of
new, more intricate branches through pattern-based combinations and notably
enhances information extraction tasks, such as relation extraction and event
argument extraction. Our methodology not only introduces an innovative approach
to taxonomy creation but also opens new avenues for applying such taxonomies in
various computational linguistics and AI-related fields.
- Abstract(参考訳): 本研究では,GPT-4とその先進的な反復であるGPT-4 Turboが,詳細な実体型分類を自律的に開発する可能性について検討する。
対象,時間,場所,組織,イベント,行動,主題など,既存の手作業による分類と同様に,広範なエンティティタイプを分類することから,包括的な分類を構築することを目的としています。
この分類は、GPT-4の内部知識ベースを利用して反復的なプロンプト技術によって徐々に洗練される。
その結果、5000種以上のニュアンスエンティティタイプを含む広範な分類法ができ、主観的評価において顕著な品質を示す。
我々は素直で効果的なプロンプト戦略を採用し、分類を動的に拡張した。
この詳細な分類法の実用的応用は多様で重要である。
パターンベースの組み合わせを通じて、新しいより複雑なブランチの作成を容易にし、関係抽出やイベント引数抽出といった情報抽出タスクを顕著に強化する。
本手法は, 分類学の創造に革新的なアプローチを導入するだけでなく, 様々な計算言語学およびai関連分野にその分類法を適用するための新しい道を開く。
関連論文リスト
- Using Zero-shot Prompting in the Automatic Creation and Expansion of
Topic Taxonomies for Tagging Retail Banking Transactions [0.0]
本研究は、命令ベース微調整LDMを用いたトピックの構築と拡張のための教師なし手法を提案する(大規模言語モデル)。
既存の分類を新しい用語で拡張するために、ゼロショットプロンプトを使用して、新しいノードを追加する場所を見つける。
得られたタグを使って、小売銀行のデータセットから商人を特徴づけるタグを割り当てます。
論文 参考訳(メタデータ) (2024-01-08T00:27:16Z) - Towards Visual Taxonomy Expansion [50.462998483087915]
本稿では,分類拡張タスクに視覚的特徴を導入し,VTE(Visual Taxonomy Expansion)を提案する。
テキストと視覚のセマンティクスをクラスタリングするためのテキストハイパーネミー学習タスクとビジュアルプロトタイプ学習タスクを提案する。
提案手法を2つのデータセットで評価し,有意な結果を得た。
論文 参考訳(メタデータ) (2023-09-12T10:17:28Z) - Probably Something: A Multi-Layer Taxonomy of Non-Fungible Tokens [62.997667081978825]
非Fungible Tokens(NFT)は、メタバースの重要なビルディングブロックとして売り出されつつある。
本研究の目的は,分類学における共通の特徴を同定し,構造化することで,NFTの基本的かつ包括的理解を確立することである。
論文 参考訳(メタデータ) (2022-08-29T18:00:30Z) - TaxoEnrich: Self-Supervised Taxonomy Completion via Structure-Semantic
Representations [28.65753036636082]
本稿では,既存の分類学における意味的特徴と構造的情報の両方を効果的に活用する新しい分類学補完フレームワークを提案する。
分類エンリッチは,(1)概念の意味的意味と分類学的関係を,強力な事前学習言語モデルに基づいて組み込んだ分類記述型埋め込み,(2)分類の構造情報を符号化して候補位置表現を学習する分類認識シーケンシャルエンコーダの4つの構成要素から構成される。
異なるドメインからの4つの大規模な実世界のデータセットの実験は、TaxoEnrichがすべての評価指標の中で最高のパフォーマンスを達成し、過去の最先端よりも大きなマージンでパフォーマンスを向上していることを示している。
論文 参考訳(メタデータ) (2022-02-10T08:10:43Z) - TaxoCom: Topic Taxonomy Completion with Hierarchical Discovery of Novel
Topic Clusters [57.59286394188025]
我々はTaxoComというトピック分類の完成のための新しい枠組みを提案する。
TaxoComは、用語と文書の新たなサブトピッククラスタを発見する。
2つの実世界のデータセットに関する包括的実験により、TaxoComは、用語の一貫性とトピックカバレッジの観点から、高品質なトピック分類を生成するだけでなく、高品質なトピック分類を生成することを実証した。
論文 参考訳(メタデータ) (2022-01-18T07:07:38Z) - Large-scale Taxonomy Induction Using Entity and Word Embeddings [13.30719395448771]
本論文では,実体とテキスト埋め込みを用いた知識からの自動推定抽出手法 TIEmb を提案する。
本稿では,Wide Web の大部分から抽出されたクラス置換関係のデータベースである WebIsA データベースにアプローチを適用し,Person and Place ドメインの階層を抽出する。
論文 参考訳(メタデータ) (2021-05-04T05:53:12Z) - Who Should Go First? A Self-Supervised Concept Sorting Model for
Improving Taxonomy Expansion [50.794640012673064]
データとビジネスの範囲が実際のアプリケーションで拡大するにつれ、既存の概念を組み込むために拡張する必要がある。
分類学の拡張に関する以前の研究は、新しい概念を独立して同時に処理し、それらの間の潜在的な関係と操作を挿入する適切な順序を無視します。
本稿では,新しい概念の中で局所ハイパーニム・ハイプニム構造を同時に発見し,挿入順序を決定する新しい自己教師付きフレームワークであるtaxoorderを提案する。
論文 参考訳(メタデータ) (2021-04-08T11:00:43Z) - Octet: Online Catalog Taxonomy Enrichment with Self-Supervision [67.26804972901952]
オンラインカタログエンリッチメンTのための自己教師型エンドツーエンドフレームワークOctopを提案する。
本稿では,用語抽出のためのシーケンスラベリングモデルをトレーニングし,分類構造を捉えるためにグラフニューラルネットワーク(GNN)を用いることを提案する。
Octetは、オンラインカタログを、オープンワールド評価の2倍に強化する。
論文 参考訳(メタデータ) (2020-06-18T04:53:07Z) - TaxoExpan: Self-supervised Taxonomy Expansion with Position-Enhanced
Graph Neural Network [62.12557274257303]
分類学は機械解釈可能な意味論から成り、多くのウェブアプリケーションに貴重な知識を提供する。
そこで我々は,既存の分類学から,クエリの集合を自動生成するTaxoExpanという,新しい自己教師型フレームワークを提案する。
本研究では,(1)既存の分類学におけるアンカー概念の局所構造を符号化する位置強調グラフニューラルネットワーク,(2)学習モデルが自己超越データにおけるラベルノイズに敏感になるようなノイズローバスト学習の2つの手法を開発する。
論文 参考訳(メタデータ) (2020-01-26T21:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。