論文の概要: KnowGPT: Black-Box Knowledge Injection for Large Language Models
- arxiv url: http://arxiv.org/abs/2312.06185v2
- Date: Mon, 19 Feb 2024 09:28:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 04:08:03.051251
- Title: KnowGPT: Black-Box Knowledge Injection for Large Language Models
- Title(参考訳): KnowGPT: 大規模言語モデルのためのブラックボックス知識注入
- Authors: Qinggang Zhang, Junnan Dong, Hao Chen, Xiao Huang, Daochen Zha,
Zailiang Yu
- Abstract要約: 我々は,ジェネレーティブ・大型言語モデル(LLM)のためのブラックボックス知識注入フレームワークであるKnowGPTを紹介した。
KnowGPTは、深い強化学習(RL)を活用して知識グラフ(KGs)から関連する知識を抽出し、マルチアーメッド帯域(MAB)を使用して各質問に最も適したプロンプトを構築する。
KnowGPTはChatGPTよりも平均23.7%改善し、GPT-4より平均2.9%改善した。
- 参考スコア(独自算出の注目度): 30.310481799206546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Large Language Models (LLMs), such as ChatGPT, offer interactive
APIs that can answer common questions at a human-expert level. However, these
models often give inaccurate or incorrect responses when faced with questions
requiring domain-specific or professional-specific knowledge not covered in
their training corpus. Furthermore, many state-of-the-art LLMs are not
open-source, making it challenging to inject knowledge with model APIs only. In
this work, we introduce KnowGPT, a black-box knowledge injection framework for
LLMs in question answering. KnowGPT leverages deep reinforcement learning (RL)
to extract relevant knowledge from Knowledge Graphs (KGs) and use Multi-Armed
Bandit (MAB) to construct the most suitable prompt for each question. Our
extensive experiments on three benchmark datasets showcase that KnowGPT
significantly enhances the existing methods. Notably, KnowGPT achieves an
average improvement of 23.7% over ChatGPT and an average improvement of 2.9%
over GPT-4. Additionally, KnowGPT attains a 91.6% accuracy on the OpenbookQA
official leaderboard, which is comparable to human-level performance.
- Abstract(参考訳): ChatGPTのようなジェネレーティブ大型言語モデル(LLM)は、人間-専門家レベルで一般的な質問に答えるインタラクティブAPIを提供する。
しかしながら、これらのモデルは、トレーニングコーパスにカバーされていないドメイン固有の知識や専門的な知識を必要とする質問に直面した時に、不正確な、または誤った応答を与えることが多い。
さらに、最先端のLLMの多くはオープンソースではないため、モデルAPIでのみ知識を注入することは困難である。
本研究では,LLMのためのブラックボックス知識注入フレームワークであるKnowGPTを紹介する。
KnowGPTは、深い強化学習(RL)を活用して知識グラフ(KGs)から関連する知識を抽出し、マルチアーメッド帯域(MAB)を使用して各質問に最適なプロンプトを構築する。
3つのベンチマークデータセットに関する広範な実験では、knowgptが既存のメソッドを大幅に強化しています。
特に、KnowGPTはChatGPTよりも平均23.7%改善し、GPT-4より平均2.9%改善した。
さらに、KnowGPTはOpenbookQAの公式リーダーボードで91.6%の精度を達成している。
関連論文リスト
- Knowledge Graph-Enhanced Large Language Models via Path Selection [58.228392005755026]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションで前例のない性能を示している。
LLMは実際に不正確な出力、すなわち幻覚の問題を発生させることが知られている。
上記の問題に対処する3段階の原理的フレームワークKELPを提案する。
論文 参考訳(メタデータ) (2024-06-19T21:45:20Z) - Empowering Small-Scale Knowledge Graphs: A Strategy of Leveraging General-Purpose Knowledge Graphs for Enriched Embeddings [3.7759315989669058]
汎用KGを用いた小規模ドメイン固有知識グラフの埋め込みを充実させるフレームワークを提案する。
実験では、Hits@10測定値で最大44%の上昇が観測された。
この比較的探索されていない研究方向は、知識集約的なタスクにおいて、KGのより頻繁な取り込みを触媒することができる。
論文 参考訳(メタデータ) (2024-05-17T12:46:23Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-10T15:10:20Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - Large Language Models Can Better Understand Knowledge Graphs Than We Thought [13.336418752729987]
知識グラフ(KG) モデルパラメータの埋め込みはますますコストがかかる。
現在のプロンプト方式は、しばしばトライアル・アンド・エラー方式に依存している。
非順序線形化三重項は、流線型NLテキストと比較して、LLMのKG理解に有効であることを示す。
論文 参考訳(メタデータ) (2024-02-18T10:44:03Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
大規模言語モデル(LLM)は、その強力な自然言語理解とゼロショット能力によって、様々な下流タスクにおいて優れたパフォーマンスを達成しているが、LLMは依然として知識制限に悩まされている。
本稿では,知識グラフから外部知識を効率的に正確に検索し,これらの課題に対処する新しいフレームワークであるKnowledgeNavigatorを提案する。
我々は,複数のKGQAベンチマーク上でKnowledgeNavigatorを評価し,そのフレームワークの有効性と一般化を実証した。
論文 参考訳(メタデータ) (2023-12-26T04:22:56Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
本稿では,知識グラフに基づくリトロフィッティング(KGR)を提案する。
実験により,実QAベンチマークにおいて,KGRはLLMの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-11-22T11:08:38Z) - Give Us the Facts: Enhancing Large Language Models with Knowledge Graphs
for Fact-aware Language Modeling [34.59678835272862]
代表的大規模言語モデル(LLM)であるChatGPTは、その強力な創発的能力のために注目されている。
本稿では,知識グラフ強化大言語モデル(KGLLM)によるLLMの強化を提案する。
KGLLMはLLMの事実推論能力を高めるソリューションを提供し、LLM研究のための新たな道を開く。
論文 参考訳(メタデータ) (2023-06-20T12:21:06Z) - Unifying Large Language Models and Knowledge Graphs: A Roadmap [61.824618473293725]
大規模言語モデル(LLM)は、自然言語処理と人工知能の分野で新たな波を発生させている。
知識グラフ(KG)、ウィキペディア、フアプ(英語版)は、豊富な事実知識を明示的に記憶する構造化された知識モデルである。
論文 参考訳(メタデータ) (2023-06-14T07:15:26Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
大規模言語モデル(LLM)は、言語理解と生成能力に優れた自然言語処理(NLP)を備えています。
それらのパフォーマンスは、関連するデータへの限られた露出のために専門的な知識を必要とするドメイン固有のタスクに最適であるかもしれない。
本稿では,LLMに関連知識にアクセスするための知識誘導モジュールを組み込んだ新しいPKGフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-08T15:05:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。