論文の概要: Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts
- arxiv url: http://arxiv.org/abs/2405.06524v1
- Date: Fri, 10 May 2024 15:10:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 15:38:11.169883
- Title: Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts
- Title(参考訳): ロングテールファクトを含む質問応答のための知識グラフを用いた大規模言語モデルの提案
- Authors: Wenyu Huang, Guancheng Zhou, Mirella Lapata, Pavlos Vougiouklis, Sebastien Montella, Jeff Z. Pan,
- Abstract要約: 大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
- 参考スコア(独自算出の注目度): 50.06633829833144
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although Large Language Models (LLMs) are effective in performing various NLP tasks, they still struggle to handle tasks that require extensive, real-world knowledge, especially when dealing with long-tail facts (facts related to long-tail entities). This limitation highlights the need to supplement LLMs with non-parametric knowledge. To address this issue, we analysed the effects of different types of non-parametric knowledge, including textual passage and knowledge graphs (KGs). Since LLMs have probably seen the majority of factual question-answering datasets already, to facilitate our analysis, we proposed a fully automatic pipeline for creating a benchmark that requires knowledge of long-tail facts for answering the involved questions. Using this pipeline, we introduce the LTGen benchmark. We evaluate state-of-the-art LLMs in different knowledge settings using the proposed benchmark. Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required. Nonetheless, the performance of the same models improved significantly when they were prompted with non-parametric knowledge. We observed that, in most cases, prompting LLMs with KG triples surpasses passage-based prompting using a state-of-the-art retriever. In addition, while prompting LLMs with both KG triples and documents does not consistently improve knowledge coverage, it can dramatically reduce hallucinations in the generated content.
- Abstract(参考訳): 大きな言語モデル(LLM)は様々なNLPタスクを実行するのに有効であるが、特にロングテールな事実(ロングテールなエンティティに関連するもの)を扱う際には、広範囲で現実世界の知識を必要とするタスクを扱うのに苦慮している。
この制限は、LLMを非パラメトリック知識で補う必要性を強調している。
この問題に対処するために,テキストパスや知識グラフ(KG)など,異なるタイプの非パラメトリック知識の効果を分析した。
LLMはすでに、我々の分析を容易にするために、事実回答データセットの大半をすでに見てきたので、私たちは、関連する疑問に答えるために、長い事実の知識を必要とするベンチマークを作成するための完全な自動パイプラインを提案しました。
このパイプラインを使用して、LTGenベンチマークを導入する。
提案したベンチマークを用いて,異なる知識環境下での最先端LLMの評価を行った。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
それにもかかわらず、同じモデルの性能は、非パラメトリックな知識によって引き起こされたときに大幅に向上した。
我々は,ほとんどの場合,KGトリプルを用いたLCMは,最先端レトリバーを用いたパスベースプロンプトを超えることが観察された。
さらに、KGトリプルと文書の両方でLLMを誘導することは、知識カバレッジを継続的に改善するわけではないが、生成したコンテンツの幻覚を劇的に低減することができる。
関連論文リスト
- Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering [18.94220625114711]
大きな言語モデル(LLM)は驚くほどよく機能し、多くのタスクにおいて人間の専門家より優れています。
本稿では,LLMに基づいてKGから推論経路を選択するパイプラインを統合し,最適化する。
また,思考の連鎖(CoT)とページランクに基づく,シンプルで効果的なサブグラフ検索手法を提案する。
論文 参考訳(メタデータ) (2024-04-16T08:28:16Z) - Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models [51.72963030032491]
大規模言語モデル(LLM)の知識文書は、時代遅れや誤った知識のためにLLMの記憶と矛盾する可能性がある。
我々は,知識紛争解決のための新しいデータセットKNOTを構築した。
論文 参考訳(メタデータ) (2024-04-04T16:40:11Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
大規模言語モデル(LLM)は、その強力な自然言語理解とゼロショット能力によって、様々な下流タスクにおいて優れたパフォーマンスを達成しているが、LLMは依然として知識制限に悩まされている。
本稿では,知識グラフから外部知識を効率的に正確に検索し,これらの課題に対処する新しいフレームワークであるKnowledgeNavigatorを提案する。
我々は,複数のKGQAベンチマーク上でKnowledgeNavigatorを評価し,そのフレームワークの有効性と一般化を実証した。
論文 参考訳(メタデータ) (2023-12-26T04:22:56Z) - Investigating Answerability of LLMs for Long-Form Question Answering [35.41413072729483]
実用的で影響力のある応用がいくつかあるので、長文質問応答(LFQA)に焦点を当てる。
本稿では,要約の要約から質問生成手法を提案し,長い文書の要約からフォローアップ質問を生成することで,困難な設定を実現できることを示す。
論文 参考訳(メタデータ) (2023-09-15T07:22:56Z) - Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs [54.22416829200613]
Eva-KELLMは、大規模言語モデルの知識編集を評価するための新しいベンチマークである。
実験結果から, 生文書を用いた知識編集手法は, 良好な結果を得るには有効ではないことが示唆された。
論文 参考訳(メタデータ) (2023-08-19T09:17:19Z) - Investigating the Factual Knowledge Boundary of Large Language Models
with Retrieval Augmentation [91.30946119104111]
大規模言語モデル(LLM)は,質問に応答する能力に対して,波及しない自信を持っていることを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
また, LLM は, 回答の定式化に際し, 提案した検索結果に依存する傾向が認められた。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge
Graph Question Answering [7.888547093390469]
大言語モデル(LLM)は、ゼロショットのクローズドブック質問応答タスクを実行することができる。
我々は,LSMの入力において,その知識を直接拡張することを提案する。
我々のフレームワークであるKAPING(Knowledge-Augmented Language Model Prompting)は、モデルトレーニングを必要としないため、完全にゼロショットである。
論文 参考訳(メタデータ) (2023-06-07T04:15:21Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
大規模言語モデル(LLM)は、言語理解と生成能力に優れた自然言語処理(NLP)を備えています。
それらのパフォーマンスは、関連するデータへの限られた露出のために専門的な知識を必要とするドメイン固有のタスクに最適であるかもしれない。
本稿では,LLMに関連知識にアクセスするための知識誘導モジュールを組み込んだ新しいPKGフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-08T15:05:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。