Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images
- URL: http://arxiv.org/abs/2408.15373v1
- Date: Tue, 27 Aug 2024 19:13:15 GMT
- Title: Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images
- Authors: Silvia Seidlitz, Jan Sellner, Alexander Studier-Fischer, Alessandro Motta, Berkin Özdemir, Beat P. Müller-Stich, Felix Nickel, Lena Maier-Hein,
- Abstract summary: We present first analysis of state-of-the-art semantic segmentation models when faced with geometric out-of-distribution data.
We propose an augmentation technique called "Organ Transplantation" to enhance generalizability.
Our augmentation technique improves SOA model performance by up to 67 % for RGB data and 90 % for HSI data, achieving performance at the level of in-distribution performance on real OOD test data.
- Score: 67.66644395272075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robust semantic segmentation of intraoperative image data holds promise for enabling automatic surgical scene understanding and autonomous robotic surgery. While model development and validation are primarily conducted on idealistic scenes, geometric domain shifts, such as occlusions of the situs, are common in real-world open surgeries. To close this gap, we (1) present the first analysis of state-of-the-art (SOA) semantic segmentation models when faced with geometric out-of-distribution (OOD) data, and (2) propose an augmentation technique called "Organ Transplantation", to enhance generalizability. Our comprehensive validation on six different OOD datasets, comprising 600 RGB and hyperspectral imaging (HSI) cubes from 33 pigs, each annotated with 19 classes, reveals a large performance drop in SOA organ segmentation models on geometric OOD data. This performance decline is observed not only in conventional RGB data (with a dice similarity coefficient (DSC) drop of 46 %) but also in HSI data (with a DSC drop of 45 %), despite the richer spectral information content. The performance decline increases with the spatial granularity of the input data. Our augmentation technique improves SOA model performance by up to 67 % for RGB data and 90 % for HSI data, achieving performance at the level of in-distribution performance on real OOD test data. Given the simplicity and effectiveness of our augmentation method, it is a valuable tool for addressing geometric domain shifts in surgical scene segmentation, regardless of the underlying model. Our code and pre-trained models are publicly available at https://github.com/IMSY-DKFZ/htc.
Related papers
- The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - A quality assurance framework for real-time monitoring of deep learning
segmentation models in radiotherapy [3.5752677591512487]
This work uses cardiac substructure segmentation as an example task to establish a quality assurance framework.
A benchmark dataset consisting of Computed Tomography (CT) images along with manual cardiac delineations of 241 patients was collected.
An image domain shift detector was developed by utilizing a trained Denoising autoencoder (DAE) and two hand-engineered features.
A regression model was trained to predict the per-patient segmentation accuracy, measured by Dice similarity coefficient (DSC)
arXiv Detail & Related papers (2023-05-19T14:51:05Z) - Semantic segmentation of surgical hyperspectral images under geometric
domain shifts [69.91792194237212]
We present the first analysis of state-of-the-art semantic segmentation networks in the presence of geometric out-of-distribution (OOD) data.
We also address generalizability with a dedicated augmentation technique termed "Organ Transplantation"
Our scheme improves on the SOA DSC by up to 67 % (RGB) and 90 % (HSI) and renders performance on par with in-distribution performance on real OOD test data.
arXiv Detail & Related papers (2023-03-20T09:50:07Z) - AADG: Automatic Augmentation for Domain Generalization on Retinal Image
Segmentation [1.0452185327816181]
We propose a data manipulation based domain generalization method, called Automated Augmentation for Domain Generalization (AADG)
Our AADG framework can effectively sample data augmentation policies that generate novel domains.
Our proposed AADG exhibits state-of-the-art generalization performance and outperforms existing approaches.
arXiv Detail & Related papers (2022-07-27T02:26:01Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - 4D-OR: Semantic Scene Graphs for OR Domain Modeling [72.1320671045942]
We propose using semantic scene graphs (SSG) to describe and summarize the surgical scene.
The nodes of the scene graphs represent different actors and objects in the room, such as medical staff, patients, and medical equipment.
We create the first publicly available 4D surgical SSG dataset, 4D-OR, containing ten simulated total knee replacement surgeries.
arXiv Detail & Related papers (2022-03-22T17:59:45Z) - Robust deep learning-based semantic organ segmentation in hyperspectral
images [29.342448910787773]
Full-scene semantic segmentation based on spectral imaging data and obtained during open surgery has received almost no attention to date.
We are investigating the following research questions based on hyperspectral imaging (HSI) data of pigs acquired in an open surgery setting.
We conclude that HSI could become a powerful image modality for fully-automatic surgical scene understanding.
arXiv Detail & Related papers (2021-11-09T20:37:38Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Multi-Spectral Image Synthesis for Crop/Weed Segmentation in Precision
Farming [3.4788711710826083]
We propose an alternative solution with respect to the common data augmentation methods, applying it to the problem of crop/weed segmentation in precision farming.
We create semi-artificial samples by replacing the most relevant object classes (i.e., crop and weeds) with their synthesized counterparts.
In addition to RGB data, we take into account also near-infrared (NIR) information, generating four channel multi-spectral synthetic images.
arXiv Detail & Related papers (2020-09-12T08:49:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.