DMS*: Minimizing Makespan for Multi-Agent Combinatorial Path Finding
- URL: http://arxiv.org/abs/2312.06314v2
- Date: Mon, 3 Jun 2024 08:00:16 GMT
- Title: DMS*: Minimizing Makespan for Multi-Agent Combinatorial Path Finding
- Authors: Zhongqiang Ren, Anushtup Nandy, Sivakumar Rathinam, Howie Choset,
- Abstract summary: Multi-Agent Combinatorial Path Finding (MCPF) seeks collision-free paths for multiple agents from their initial to goal locations.
Recent work develops methods to address MCPF while minimizing the sum of individual arrival times at goals.
This paper proposes a min-max variant of MCPF, denoted as MCPF-max, that minimizes the makespan of the agents.
- Score: 25.756524895372454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Agent Combinatorial Path Finding (MCPF) seeks collision-free paths for multiple agents from their initial to goal locations, while visiting a set of intermediate target locations in the middle of the paths. MCPF is challenging as it involves both planning collision-free paths for multiple agents and target sequencing, i.e., solving traveling salesman problems to assign targets to and find the visiting order for the agents. Recent work develops methods to address MCPF while minimizing the sum of individual arrival times at goals. Such a problem formulation may result in paths with different arrival times and lead to a long makespan, the maximum arrival time, among the agents. This paper proposes a min-max variant of MCPF, denoted as MCPF-max, that minimizes the makespan of the agents. While the existing methods (such as MS*) for MCPF can be adapted to solve MCPF-max, we further develop two new techniques based on MS* to defer the expensive target sequencing during planning to expedite the overall computation. We analyze the properties of the resulting algorithm Deferred MS* (DMS*), and test DMS* with up to 20 agents and 80 targets. We demonstrate the use of DMS* on differential-drive robots.
Related papers
- Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
Multi-Agent Pathfinding problem involves finding a set of conflict-free paths for a group of agents confined to a graph.
In this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally.
We propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks.
arXiv Detail & Related papers (2023-12-26T06:57:22Z) - Traffic Flow Optimisation for Lifelong Multi-Agent Path Finding [29.76466191644455]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics that asks us to compute collision-free paths for a team of agents.
We propose a new approach for MAPF where agents are guided to their destination by following congestion-avoiding paths.
We evaluate the idea in two large-scale settings: one-shot MAPF, where each agent has a single destination, and lifelong MAPF, where agents are continuously assigned new destinations.
arXiv Detail & Related papers (2023-08-22T07:17:39Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
We introduce an original variant of Monte-Carlo Tree Search (MCTS) tailored to multi-agent pathfinding.
Specifically, we use individual paths to assist the agents with the the goal-reaching behavior.
We also use a dedicated decomposition technique to reduce the branching factor of the tree search procedure.
arXiv Detail & Related papers (2023-07-25T12:33:53Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Subdimensional Expansion Using Attention-Based Learning For Multi-Agent
Path Finding [9.2127262112464]
Multi-Agent Path Finding (MAPF) finds conflict-free paths for multiple agents from their respective start to goal locations.
We develop a novel multi-agent planner called LM* by integrating this learning-based single-agent planner with M*.
Our results show that for both "seen" and "unseen" maps, in comparison with M*, LM* has fewer conflicts to be resolved and thus, runs faster and enjoys higher success rates.
arXiv Detail & Related papers (2021-09-29T20:01:04Z) - MS*: A New Exact Algorithm for Multi-agent Simultaneous Multi-goal
Sequencing and Path Finding [10.354181009277623]
In multi-agent applications such as surveillance and logistics, fleets of mobile agents are often expected to coordinate and safely visit a large number of goal locations.
In this article, we introduce a new algorithm called MS* which computes an optimal solution for this multi-agent problem.
Numerical results show that our new algorithm can solve the multi-agent problem with 20 agents and 50 goals in a minute of CPU time on a standard laptop.
arXiv Detail & Related papers (2021-03-18T01:57:35Z) - Multi-Goal Multi-Agent Path Finding via Decoupled and Integrated Goal
Vertex Ordering [15.99072005190786]
We introduce multi-goal multi agent path finding (MAPF$MG$) which generalizes the standard discrete multi-agent path finding (MAPF) problem.
We suggest two novel algorithms using different paradigms to address MAPF$MG$: a search-based search algorithm called Hamiltonian-CBS (HCBS) and a compilation-based algorithm built using the SMT paradigm, called SMT-Hamiltonian-CBS (SMT-HCBS)
arXiv Detail & Related papers (2020-09-10T22:27:18Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.