Loosely Synchronized Rule-Based Planning for Multi-Agent Path Finding with Asynchronous Actions
- URL: http://arxiv.org/abs/2412.11678v2
- Date: Sat, 21 Dec 2024 08:38:09 GMT
- Title: Loosely Synchronized Rule-Based Planning for Multi-Agent Path Finding with Asynchronous Actions
- Authors: Shuai Zhou, Shizhe Zhao, Zhongqiang Ren,
- Abstract summary: Multi-Agent Path Finding (MAPF) seeks collision-free paths for multiple agents from their respective starting locations to their respective goal locations.
Although many MAPF algorithms can handle up to thousands of agents, they usually rely on the assumption that each action of the agent takes a time unit.
This paper develops new planners that lie on the other end of the spectrum, trading off solution quality for scalability.
- Score: 5.5233853454863615
- License:
- Abstract: Multi-Agent Path Finding (MAPF) seeks collision-free paths for multiple agents from their respective starting locations to their respective goal locations while minimizing path costs. Although many MAPF algorithms were developed and can handle up to thousands of agents, they usually rely on the assumption that each action of the agent takes a time unit, and the actions of all agents are synchronized in a sense that the actions of agents start at the same discrete time step, which may limit their use in practice. Only a few algorithms were developed to address asynchronous actions, and they all lie on one end of the spectrum, focusing on finding optimal solutions with limited scalability. This paper develops new planners that lie on the other end of the spectrum, trading off solution quality for scalability, by finding an unbounded sub-optimal solution for many agents. Our method leverages both search methods (LSS) in handling asynchronous actions and rule-based planning methods (PIBT) for MAPF. We analyze the properties of our method and test it against several baselines with up to 1000 agents in various maps. Given a runtime limit, our method can handle an order of magnitude more agents than the baselines with about 25% longer makespan.
Related papers
- Optimal and Bounded Suboptimal Any-Angle Multi-agent Pathfinding [13.296796764344169]
We present the first optimal any-angle multi-agent pathfinding algorithm.
Our planner is based on the Continuous Conflict-based Search (CCBS) algorithm and an optimal any-angle variant of the Safe Interval Path Planning (TO-AA-SIPP)
We adapt two techniques from classical MAPF to the any-angle setting, namely Disjoint Splitting and Multi-Constraints.
arXiv Detail & Related papers (2024-04-25T07:41:47Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
Multi-Agent Pathfinding problem involves finding a set of conflict-free paths for a group of agents confined to a graph.
In this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally.
We propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks.
arXiv Detail & Related papers (2023-12-26T06:57:22Z) - DMS*: Minimizing Makespan for Multi-Agent Combinatorial Path Finding [25.756524895372454]
Multi-Agent Combinatorial Path Finding (MCPF) seeks collision-free paths for multiple agents from their initial to goal locations.
Recent work develops methods to address MCPF while minimizing the sum of individual arrival times at goals.
This paper proposes a min-max variant of MCPF, denoted as MCPF-max, that minimizes the makespan of the agents.
arXiv Detail & Related papers (2023-12-11T11:53:31Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
We introduce an original variant of Monte-Carlo Tree Search (MCTS) tailored to multi-agent pathfinding.
Specifically, we use individual paths to assist the agents with the the goal-reaching behavior.
We also use a dedicated decomposition technique to reduce the branching factor of the tree search procedure.
arXiv Detail & Related papers (2023-07-25T12:33:53Z) - ACE: Cooperative Multi-agent Q-learning with Bidirectional
Action-Dependency [65.28061634546577]
Multi-agent reinforcement learning (MARL) suffers from the non-stationarity problem.
In this paper, we propose bidirectional action-dependent Q-learning (ACE)
ACE outperforms the state-of-the-art algorithms on Google Research Football and StarCraft Multi-Agent Challenge.
arXiv Detail & Related papers (2022-11-29T10:22:55Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - MS*: A New Exact Algorithm for Multi-agent Simultaneous Multi-goal
Sequencing and Path Finding [10.354181009277623]
In multi-agent applications such as surveillance and logistics, fleets of mobile agents are often expected to coordinate and safely visit a large number of goal locations.
In this article, we introduce a new algorithm called MS* which computes an optimal solution for this multi-agent problem.
Numerical results show that our new algorithm can solve the multi-agent problem with 20 agents and 50 goals in a minute of CPU time on a standard laptop.
arXiv Detail & Related papers (2021-03-18T01:57:35Z) - Loosely Synchronized Search for Multi-agent Path Finding with
Asynchronous Actions [10.354181009277623]
Multi-agent path finding (MAPF) determines an ensemble of collision-free paths for multiple agents between their respective start and goal locations.
This article presents a natural generalization of MAPF with asynchronous actions where agents do not necessarily start and stop concurrently.
arXiv Detail & Related papers (2021-03-08T02:34:17Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.