論文の概要: Revisiting Graph-based Fraud Detection in Sight of Heterophily and
Spectrum
- arxiv url: http://arxiv.org/abs/2312.06441v1
- Date: Mon, 11 Dec 2023 15:18:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-12 15:05:16.481497
- Title: Revisiting Graph-based Fraud Detection in Sight of Heterophily and
Spectrum
- Title(参考訳): ヘテロフィアとスペクトルを考慮したグラフに基づく不正検出の再検討
- Authors: Fan Xu, Nan Wang, Hao Wu, Xuezhi Wen, Xibin Zhao
- Abstract要約: グラフベースの不正検出(GFD)は、半教師付きノードバイナリ分類タスクとして困難なものと見なすことができる。
本稿では,セミ教師付きGNNベースの詐欺検知器SEC-GFDを提案する。
4つの実世界の不正検出データセットの総合的な実験結果は、SEC-GFDが他の競合グラフベースの不正検出よりも優れていることを示している。
- 参考スコア(独自算出の注目度): 18.704381540258726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based fraud detection (GFD) can be regarded as a challenging
semi-supervised node binary classification task. In recent years, Graph Neural
Networks(GNN) have been widely applied to GFD, characterizing the anomalous
possibility of a node by aggregating neighbor information. However, fraud
graphs are inherently heterophilic, thus most of GNNs perform poorly due to
their assumption of homophily. In addition, due to the existence of heterophily
and class imbalance problem, the existing models do not fully utilize the
precious node label information. To address the above issues, this paper
proposes a semi-supervised GNN-based fraud detector SEC-GFD. This detector
includes a hybrid filtering module and a local environmental constraint module,
the two modules are utilized to solve heterophily and label utilization problem
respectively. The first module starts from the perspective of the spectral
domain, and solves the heterophily problem to a certain extent. Specifically,
it divides the spectrum into multiple mixed frequency bands according to the
correlation between spectrum energy distribution and heterophily. Then in order
to make full use of the node label information, a local environmental
constraint module is adaptively designed. The comprehensive experimental
results on four real-world fraud detection datasets show that SEC-GFD
outperforms other competitive graph-based fraud detectors.
- Abstract(参考訳): graph-based fraud detection (gfd)は、難解な半教師付きノードバイナリ分類タスクと見なすことができる。
近年、グラフニューラルネットワーク(GNN)がGFDに広く適用され、近隣情報を集約することでノードの異常な可能性を特徴づけている。
しかし、不正グラフは本質的にヘテロ親和性を持つため、ほとんどのGNNはホモフィリーの仮定により性能が劣る。
また,異種不均衡問題が存在するため,既存のモデルでは貴重なノードラベル情報を十分に利用していない。
以上の課題に対処するため,本研究では,セミ教師付きGNNベースの不正検知器SEC-GFDを提案する。
ハイブリッドフィルタモジュールとローカル環境制約モジュールとを具備し、2つのモジュールをそれぞれヘテロフィリーおよびラベル利用問題を解決するために利用する。
最初の加群はスペクトル領域の観点から始まり、ヘテロフィイ問題をある程度解決する。
具体的には、スペクトルエネルギー分布とヘテロフィリーの相関により、スペクトルを複数の混合周波数帯域に分割する。
そして、ノードラベル情報をフル活用するために、局所環境制約モジュールを適応的に設計する。
4つの実世界の不正検出データセットの総合的な実験結果は、SEC-GFDが他の競合グラフベースの不正検出よりも優れていることを示している。
関連論文リスト
- Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection [32.165578819142695]
グラフ異常検出のための教師なし対実データ拡張法CAGADを提案する。
グラフ固有の拡散モデルを設計し、その近傍の一部(おそらく通常のもの)を異常なものに翻訳する。
翻訳された異常な隣人を集約することで、偽造表現はより識別しやすくなり、さらに検出性能を主張する。
論文 参考訳(メタデータ) (2024-07-02T10:37:54Z) - Alleviating Structural Distribution Shift in Graph Anomaly Detection [70.1022676681496]
グラフ異常検出(GAD)は二項分類の問題である。
ガロン神経ネットワーク(GNN)は、同胞性隣人からの正常の分類に有用である。
ヘテロ親水性隣人の影響を緩和し、不変にするための枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-25T13:07:34Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
MultItask acTIve Graph Anomaly Detection framework,すなわちMITIGATEを提案する。
ノード分類タスクを結合することにより、MITIGATEは既知の異常を伴わずに配布外ノードを検出する能力を得る。
4つのデータセットに関する実証的研究は、MITIGATEが異常検出のための最先端の手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-01-24T03:43:45Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - Graph Anomaly Detection with Unsupervised GNNs [19.772490600670363]
グラフニューラルネットワーク(GNN)に基づくエンドツーエンドのグラフレベルの異常検出モデルであるGLAMを設計する。
また,これまでに検討されていない分布異常の検出を目的とした,MDDプールと呼ばれるグラフレベルの埋め込みのための新しいプール方式を提案する。
論文 参考訳(メタデータ) (2022-10-18T01:59:58Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - Alleviating the Inconsistency Problem of Applying Graph Neural Network
to Fraud Detection [78.88163190021798]
不整合問題に対処するために、新しいGNNフレームワークである$mathsfGraphConsis$を導入します。
4つのデータセットの実証分析は、不正検出タスクにおいて不整合の問題が不可欠であることを示唆している。
我々はまた、SOTAモデルを実装したGNNベースの不正検出ツールボックスもリリースした。
論文 参考訳(メタデータ) (2020-05-01T21:43:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。