Measurement-driven neural-network training for integrated magnetic tunnel junction arrays
- URL: http://arxiv.org/abs/2312.06446v2
- Date: Tue, 14 May 2024 17:30:00 GMT
- Title: Measurement-driven neural-network training for integrated magnetic tunnel junction arrays
- Authors: William A. Borders, Advait Madhavan, Matthew W. Daniels, Vasileia Georgiou, Martin Lueker-Boden, Tiffany S. Santos, Patrick M. Braganca, Mark D. Stiles, Jabez J. McClelland, Brian D. Hoskins,
- Abstract summary: We show that even a small number of defects in physically mapped networks significantly degrades the performance of networks trained without defects.
We then demonstrate a robust training method that extends hardware-aware training to statistics-aware training.
- Score: 0.9682994745050424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing scale of neural networks needed to support more complex applications has led to an increasing requirement for area- and energy-efficient hardware. One route to meeting the budget for these applications is to circumvent the von Neumann bottleneck by performing computation in or near memory. An inevitability of transferring neural networks onto hardware is that non-idealities such as device-to-device variations or poor device yield impact performance. Methods such as hardware-aware training, where substrate non-idealities are incorporated during network training, are one way to recover performance at the cost of solution generality. In this work, we demonstrate inference on hardware neural networks consisting of 20,000 magnetic tunnel junction arrays integrated on a complementary metal-oxide-semiconductor chips that closely resembles market-ready spin transfer-torque magnetoresistive random access memory technology. Using 36 dies, each containing a crossbar array with its own non-idealities, we show that even a small number of defects in physically mapped networks significantly degrades the performance of networks trained without defects and show that, at the cost of generality, hardware-aware training accounting for specific defects on each die can recover to comparable performance with ideal networks. We then demonstrate a robust training method that extends hardware-aware training to statistics-aware training, producing network weights that perform well on most defective dies regardless of their specific defect locations. When evaluated on the 36 physical dies, statistics-aware trained solutions can achieve a mean misclassification error on the MNIST dataset that differs from the software-baseline by only 2 %. This statistics-aware training method could be generalized to networks with many layers that are mapped to hardware suited for industry-ready applications.
Related papers
- Layer Ensemble Averaging for Improving Memristor-Based Artificial Neural Network Performance [0.6560901506023631]
In-memory computation architectures, like memristors, offer promise but face challenges due to hardware non-idealities.
Layer ensemble averaging is a technique to map pre-trained neural network solutions from software to defective hardware crossbars.
Results show that layer ensemble averaging can reliably boost defective memristive network performance up to the software baseline.
arXiv Detail & Related papers (2024-04-24T03:19:31Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Synaptic metaplasticity with multi-level memristive devices [1.5598974049838272]
We propose a memristor-based hardware solution for implementing metaplasticity during both inference and training.
We show that a two-layer perceptron achieves 97% and 86% accuracy on consecutive training of MNIST and Fashion-MNIST.
Our architecture is compatible with the memristor limited endurance and has a 15x reduction in memory.
arXiv Detail & Related papers (2023-06-21T09:40:25Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Implementation of a Binary Neural Network on a Passive Array of Magnetic
Tunnel Junctions [2.917306244908168]
We leverage the low-power and the inherently binary operation of magnetic tunnel junctions (MTJs) to demonstrate neural network hardware inference based on passive arrays of MTJs.
We achieve software-equivalent accuracy of up to 95.3 % with proper tuning of network parameters in 15 x 15 MTJ arrays having a range of device sizes.
arXiv Detail & Related papers (2021-12-16T19:11:29Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
Deep neural networks (DNNs) come with heavy parameterization, leading to external dynamic random-access memory (DRAM) for storage.
We present SmartDeal (SD), an algorithm framework to trade higher-cost memory storage/access for lower-cost computation.
We show that SD leads to 10.56x and 4.48x reduction in the storage and training energy, with negligible accuracy loss compared to state-of-the-art training baselines.
arXiv Detail & Related papers (2021-01-04T18:54:07Z) - Robust error bounds for quantised and pruned neural networks [1.8083503268672914]
Machine learning algorithms are moving towards decentralisation with the data and algorithms stored, and even trained, locally on devices.
The device hardware becomes the main bottleneck for model capability in this set-up, creating a need for slimmed down, more efficient neural networks.
A semi-definite program is introduced to bound the worst-case error caused by pruning or quantising a neural network.
It is hoped that the computed bounds will provide certainty to the performance of these algorithms when deployed on safety-critical systems.
arXiv Detail & Related papers (2020-11-30T22:19:44Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - Benchmarking Deep Spiking Neural Networks on Neuromorphic Hardware [0.0]
We use the methodology of converting pre-trained non-spiking to spiking neural networks to evaluate the performance loss and measure the energy-per-inference.
We demonstrate that the conversion loss is usually below one percent for digital implementations, and moderately higher for analog systems with the benefit of much lower energy-per-inference costs.
arXiv Detail & Related papers (2020-04-03T16:25:49Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.