Layer Ensemble Averaging for Improving Memristor-Based Artificial Neural Network Performance
- URL: http://arxiv.org/abs/2404.15621v1
- Date: Wed, 24 Apr 2024 03:19:31 GMT
- Title: Layer Ensemble Averaging for Improving Memristor-Based Artificial Neural Network Performance
- Authors: Osama Yousuf, Brian Hoskins, Karthick Ramu, Mitchell Fream, William A. Borders, Advait Madhavan, Matthew W. Daniels, Andrew Dienstfrey, Jabez J. McClelland, Martin Lueker-Boden, Gina C. Adam,
- Abstract summary: In-memory computation architectures, like memristors, offer promise but face challenges due to hardware non-idealities.
Layer ensemble averaging is a technique to map pre-trained neural network solutions from software to defective hardware crossbars.
Results show that layer ensemble averaging can reliably boost defective memristive network performance up to the software baseline.
- Score: 0.6560901506023631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial neural networks have advanced due to scaling dimensions, but conventional computing faces inefficiency due to the von Neumann bottleneck. In-memory computation architectures, like memristors, offer promise but face challenges due to hardware non-idealities. This work proposes and experimentally demonstrates layer ensemble averaging, a technique to map pre-trained neural network solutions from software to defective hardware crossbars of emerging memory devices and reliably attain near-software performance on inference. The approach is investigated using a custom 20,000-device hardware prototyping platform on a continual learning problem where a network must learn new tasks without catastrophically forgetting previously learned information. Results demonstrate that by trading off the number of devices required for layer mapping, layer ensemble averaging can reliably boost defective memristive network performance up to the software baseline. For the investigated problem, the average multi-task classification accuracy improves from 61 % to 72 % (< 1 % of software baseline) using the proposed approach.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Measurement-driven neural-network training for integrated magnetic tunnel junction arrays [0.9682994745050424]
We show that even a small number of defects in physically mapped networks significantly degrades the performance of networks trained without defects.
We then demonstrate a robust training method that extends hardware-aware training to statistics-aware training.
arXiv Detail & Related papers (2023-12-11T15:28:47Z) - Synaptic metaplasticity with multi-level memristive devices [1.5598974049838272]
We propose a memristor-based hardware solution for implementing metaplasticity during both inference and training.
We show that a two-layer perceptron achieves 97% and 86% accuracy on consecutive training of MNIST and Fashion-MNIST.
Our architecture is compatible with the memristor limited endurance and has a 15x reduction in memory.
arXiv Detail & Related papers (2023-06-21T09:40:25Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
Neuromorphic computing is an emerging paradigm that confronts this imbalance by computations directly in analog memories.
This work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa.
arXiv Detail & Related papers (2022-12-29T15:10:59Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Reduced-Order Neural Network Synthesis with Robustness Guarantees [0.0]
Machine learning algorithms are being adapted to run locally on board, potentially hardware limited, devices to improve user privacy, reduce latency and be more energy efficient.
To address this issue, a method to automatically synthesize reduced-order neural networks (having fewer neurons) approxing the input/output mapping of a larger one is introduced.
Worst-case bounds for this approximation error are obtained and the approach can be applied to a wide variety of neural networks architectures.
arXiv Detail & Related papers (2021-02-18T12:03:57Z) - Robust error bounds for quantised and pruned neural networks [1.8083503268672914]
Machine learning algorithms are moving towards decentralisation with the data and algorithms stored, and even trained, locally on devices.
The device hardware becomes the main bottleneck for model capability in this set-up, creating a need for slimmed down, more efficient neural networks.
A semi-definite program is introduced to bound the worst-case error caused by pruning or quantising a neural network.
It is hoped that the computed bounds will provide certainty to the performance of these algorithms when deployed on safety-critical systems.
arXiv Detail & Related papers (2020-11-30T22:19:44Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
We propose the autoencoder-based low-rank filter-sharing technique technique (ALF)
ALF shows a reduction of 70% in network parameters, 61% in operations and 41% in execution time, with minimal loss in accuracy.
arXiv Detail & Related papers (2020-07-27T09:01:22Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.