Decoupling Meta-Reinforcement Learning with Gaussian Task Contexts and
Skills
- URL: http://arxiv.org/abs/2312.06518v1
- Date: Mon, 11 Dec 2023 16:50:14 GMT
- Title: Decoupling Meta-Reinforcement Learning with Gaussian Task Contexts and
Skills
- Authors: Hongcai He, Anjie Zhu, Shuang Liang, Feiyu Chen, Jie Shao
- Abstract summary: We propose a framework called decoupled meta-reinforcement learning (DCMRL)
DCMRL pulls in similar task contexts within the same task and pushing away different task contexts of different tasks.
Experiments show that DCMRL is more effective than previous meta-RL methods with more generalizable prior experience.
- Score: 17.666749042008178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline meta-reinforcement learning (meta-RL) methods, which adapt to unseen
target tasks with prior experience, are essential in robot control tasks.
Current methods typically utilize task contexts and skills as prior experience,
where task contexts are related to the information within each task and skills
represent a set of temporally extended actions for solving subtasks. However,
these methods still suffer from limited performance when adapting to unseen
target tasks, mainly because the learned prior experience lacks generalization,
i.e., they are unable to extract effective prior experience from meta-training
tasks by exploration and learning of continuous latent spaces. We propose a
framework called decoupled meta-reinforcement learning (DCMRL), which (1)
contrastively restricts the learning of task contexts through pulling in
similar task contexts within the same task and pushing away different task
contexts of different tasks, and (2) utilizes a Gaussian quantization
variational autoencoder (GQ-VAE) for clustering the Gaussian distributions of
the task contexts and skills respectively, and decoupling the exploration and
learning processes of their spaces. These cluster centers which serve as
representative and discrete distributions of task context and skill are stored
in task context codebook and skill codebook, respectively. DCMRL can acquire
generalizable prior experience and achieve effective adaptation to unseen
target tasks during the meta-testing phase. Experiments in the navigation and
robot manipulation continuous control tasks show that DCMRL is more effective
than previous meta-RL methods with more generalizable prior experience.
Related papers
- Active Task Randomization: Learning Robust Skills via Unsupervised
Generation of Diverse and Feasible Tasks [37.73239471412444]
We introduce Active Task Randomization (ATR), an approach that learns robust skills through the unsupervised generation of training tasks.
ATR selects suitable tasks, which consist of an initial environment state and manipulation goal, for learning robust skills by balancing the diversity and feasibility of the tasks.
We demonstrate that the learned skills can be composed by a task planner to solve unseen sequential manipulation problems based on visual inputs.
arXiv Detail & Related papers (2022-11-11T11:24:55Z) - Continual Vision-based Reinforcement Learning with Group Symmetries [18.7526848176769]
We introduce a unique Continual Vision-based Reinforcement Learning method that recognizes Group Symmetries, called COVERS.
Our results show that COVERS accurately assigns tasks to their respective groups and significantly outperforms existing methods in terms of generalization capability.
arXiv Detail & Related papers (2022-10-21T23:41:02Z) - Learning Action Translator for Meta Reinforcement Learning on
Sparse-Reward Tasks [56.63855534940827]
This work introduces a novel objective function to learn an action translator among training tasks.
We theoretically verify that the value of the transferred policy with the action translator can be close to the value of the source policy.
We propose to combine the action translator with context-based meta-RL algorithms for better data collection and more efficient exploration during meta-training.
arXiv Detail & Related papers (2022-07-19T04:58:06Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Skill-based Meta-Reinforcement Learning [65.31995608339962]
We devise a method that enables meta-learning on long-horizon, sparse-reward tasks.
Our core idea is to leverage prior experience extracted from offline datasets during meta-learning.
arXiv Detail & Related papers (2022-04-25T17:58:19Z) - CoMPS: Continual Meta Policy Search [113.33157585319906]
We develop a new continual meta-learning method to address challenges in sequential multi-task learning.
We find that CoMPS outperforms prior continual learning and off-policy meta-reinforcement methods on several sequences of challenging continuous control tasks.
arXiv Detail & Related papers (2021-12-08T18:53:08Z) - Meta-Reinforcement Learning in Broad and Non-Parametric Environments [8.091658684517103]
We introduce TIGR, a Task-Inference-based meta-RL algorithm for tasks in non-parametric environments.
We decouple the policy training from the task-inference learning and efficiently train the inference mechanism on the basis of an unsupervised reconstruction objective.
We provide a benchmark with qualitatively distinct tasks based on the half-cheetah environment and demonstrate the superior performance of TIGR compared to state-of-the-art meta-RL approaches.
arXiv Detail & Related papers (2021-08-08T19:32:44Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
Multi-Task Learning has emerged as a methodology in which multiple tasks are jointly learned by a shared learning algorithm.
We deal with heterogeneous MTL, simultaneously addressing detection, classification & regression problems.
We build FaceBehaviorNet, the first framework for large-scale face analysis, by jointly learning all facial behavior tasks.
arXiv Detail & Related papers (2021-05-08T22:26:52Z) - Learning Context-aware Task Reasoning for Efficient Meta-reinforcement
Learning [29.125234093368732]
We propose a novel meta-RL strategy to achieve human-level efficiency in learning novel tasks.
We decompose the meta-RL problem into three sub-tasks, task-exploration, task-inference and task-fulfillment.
Our algorithm effectively performs exploration for task inference, improves sample efficiency during both training and testing, and mitigates the meta-overfitting problem.
arXiv Detail & Related papers (2020-03-03T07:38:53Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.