論文の概要: 3D Hand Pose Estimation in Egocentric Images in the Wild
- arxiv url: http://arxiv.org/abs/2312.06583v1
- Date: Mon, 11 Dec 2023 18:15:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-12 14:31:16.035947
- Title: 3D Hand Pose Estimation in Egocentric Images in the Wild
- Title(参考訳): 野生のエゴセントリック画像における3次元ハンドポース推定
- Authors: Aditya Prakash, Ruisen Tu, Matthew Chang, Saurabh Gupta
- Abstract要約: 本研究では,野生の自我中心画像における3次元手ポーズ推定法であるWildHandsを提案する。
我々は,セグメント化マスクとグリップラベルという形で,ウィジェット内のデータに対する補助的監視を利用する。
我々のアプローチはARCTICのリーダーボード上で最高の3Dポーズを実現し、FrankMocapより優れています。
- 参考スコア(独自算出の注目度): 14.16233270809845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present WildHands, a method for 3D hand pose estimation in egocentric
images in the wild. This is challenging due to (a) lack of 3D hand pose
annotations for images in the wild, and (b) a form of perspective
distortion-induced shape ambiguity that arises in the analysis of crops around
hands. For the former, we use auxiliary supervision on in-the-wild data in the
form of segmentation masks & grasp labels in addition to 3D supervision
available in lab datasets. For the latter, we provide spatial cues about the
location of the hand crop in the camera's field of view. Our approach achieves
the best 3D hand pose on the ARCTIC leaderboard and outperforms FrankMocap, a
popular and robust approach for estimating hand pose in the wild, by 45.3% when
evaluated on 2D hand pose on our EPIC-HandKps dataset.
- Abstract(参考訳): 野生の自我中心画像における3次元手ポーズ推定法であるWildHandsを提案する。
これは難しいことです
(a)野生のイメージに対する3dハンドポーズアノテーションの欠如,及び
(b)手まわりの作物の分析において生じる遠近的歪みによる形状曖昧さの一形態。
前者については,実験室データセットで利用可能な3次元監視に加えて,セグメンテーションマスクとグラブラベルという形で,wildデータに対する補助監督を行う。
後者については、カメラの視野における手作物の位置に関する空間的手がかりを提供する。
われわれのアプローチはARCTICのリーダーボード上で最高の3Dハンドポーズを実現し、EPIC-HandKpsデータセットで2Dハンドポーズを評価するとFrankMocapを45.3%向上させる。
関連論文リスト
- AssemblyHands: Towards Egocentric Activity Understanding via 3D Hand
Pose Estimation [26.261767086366866]
正確な3Dハンドポーズアノテーションを備えた大規模ベンチマークデータセットである AssemblyHands を提示する。
AssemblyHandsは490Kのエゴセントリックなイメージを含む3.0Mの注釈付きイメージを提供する。
我々の研究は、高品質の手のポーズが、行動を認識する能力を直接的に改善することを示しています。
論文 参考訳(メタデータ) (2023-04-24T17:52:57Z) - MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision [72.5863451123577]
正確な3Dポーズとカメラ推定が可能なニューラルモデルをトレーニングする方法を示す。
本手法は,古典的バンドル調整と弱教師付き単分子3Dベースラインの両方に優れる。
論文 参考訳(メタデータ) (2021-08-10T18:39:56Z) - CanonPose: Self-Supervised Monocular 3D Human Pose Estimation in the
Wild [31.334715988245748]
ラベルのないマルチビューデータから1つの画像3Dポーズ推定器を学習する自己教師型アプローチを提案する。
既存のほとんどの方法とは対照的に、校正カメラは必要とせず、移動カメラから学ぶことができる。
成功の鍵は、ビューとトレーニングサンプルの情報を混ぜ合わせた、新しく偏見のない再建目標である。
論文 参考訳(メタデータ) (2020-11-30T10:42:27Z) - SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Camera [97.0162841635425]
頭部装着型VR装置の縁に設置した下向きの魚眼カメラから撮影した単眼画像から,エゴセントリックな3Dボディポーズ推定法を提案する。
この特異な視点は、厳密な自己閉塞と視点歪みを伴う、独特の視覚的な外観のイメージに繋がる。
本稿では,2次元予測の不確実性を考慮した新しいマルチブランチデコーダを用いたエンコーダデコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-02T16:18:06Z) - Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated
Convolution [34.301501457959056]
本稿では,2次元関節を3次元に変換するために,ゲート型畳み込みモジュールを用いた時間回帰ネットワークを提案する。
また, 正規化ポーズを大域軌跡に変換するために, 単純かつ効果的な局所化手法も実施した。
提案手法は,最先端の2D-to-3Dポーズ推定法よりも優れている。
論文 参考訳(メタデータ) (2020-10-31T04:35:24Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
本稿では,RGB画像と大規模に異なる複数の身体部位の3次元メッシュを推定することを目的とする。
主な課題は、2D画像のすべての身体部分の3Dアノテーションを完備するトレーニングデータがないことである。
本稿では,D2S(Deep-to-scale)投影法を提案する。
論文 参考訳(メタデータ) (2020-10-27T03:31:35Z) - MM-Hand: 3D-Aware Multi-Modal Guided Hand Generative Network for 3D Hand
Pose Synthesis [81.40640219844197]
モノラルなRGB画像から3Dハンドポーズを推定することは重要だが難しい。
解決策は、高精度な3D手指キーポイントアノテーションを用いた大規模RGB手指画像のトレーニングである。
我々は,現実的で多様な3次元ポーズ保存ハンドイメージを合成する学習ベースアプローチを開発した。
論文 参考訳(メタデータ) (2020-10-02T18:27:34Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
ラベルのないビデオフレームからバリエーションを分離する自己教師付き学習フレームワークを提案する。
3Dポーズと空間部分マップの表現ギャップを埋める、微分可能な形式化により、多様なカメラの動きを持つビデオで操作できる。
論文 参考訳(メタデータ) (2020-04-09T07:55:01Z) - Multi-Person Absolute 3D Human Pose Estimation with Weak Depth
Supervision [0.0]
弱教師付きでRGB-D画像を追加してトレーニングできるネットワークを導入する。
我々のアルゴリズムは、単眼で、多人、絶対的なポーズ推定器である。
アルゴリズムを複数のベンチマークで評価し,一貫した誤差率の向上を示した。
論文 参考訳(メタデータ) (2020-04-08T13:29:22Z) - Measuring Generalisation to Unseen Viewpoints, Articulations, Shapes and
Objects for 3D Hand Pose Estimation under Hand-Object Interaction [137.28465645405655]
HANDS'19は、現在の3Dハンドポーズ推定器(HPE)がトレーニングセットのポーズを補間し、外挿する能力を評価するための課題である。
本研究では,最先端手法の精度が低下し,トレーニングセットから外れたポーズでほとんど失敗することを示す。
論文 参考訳(メタデータ) (2020-03-30T19:28:13Z) - Silhouette-Net: 3D Hand Pose Estimation from Silhouettes [16.266199156878056]
既存のアプローチは主に、モノクラーRGB、マルチビューRGB、ディープ、ポイントクラウドなど、異なる入力モダリティと設定を考慮に入れている。
暗黙の奥行き認識からガイダンスを自動的に学習し、エンドツーエンドのトレーニングを通じてポーズのあいまいさを解決する新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2019-12-28T10:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。