論文の概要: EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning
- arxiv url: http://arxiv.org/abs/2312.06722v3
- Date: Tue, 11 Jun 2024 06:53:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 00:39:03.562219
- Title: EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning
- Title(参考訳): EgoPlan-Bench: ヒューマン・レベル・プランニングのためのマルチモーダル・大規模言語モデルのベンチマーク
- Authors: Yi Chen, Yuying Ge, Yixiao Ge, Mingyu Ding, Bohao Li, Rui Wang, Ruifeng Xu, Ying Shan, Xihui Liu,
- Abstract要約: 実世界のシナリオにおけるMLLMの計画能力を評価するベンチマークであるEgoPlan-Benchを紹介する。
EgoPlan-Benchは、人間レベルのタスクプランニングを実現するためのMLLMの改善のかなりの範囲を浮き彫りにする。
また,EgoPlan-Bench上でのモデル性能を効果的に向上する特殊命令チューニングデータセットであるEgoPlan-ITを提案する。
- 参考スコア(独自算出の注目度): 84.6451394629312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The pursuit of artificial general intelligence (AGI) has been accelerated by Multimodal Large Language Models (MLLMs), which exhibit superior reasoning, generalization capabilities, and proficiency in processing multimodal inputs. A crucial milestone in the evolution of AGI is the attainment of human-level planning, a fundamental ability for making informed decisions in complex environments, and solving a wide range of real-world problems. Despite the impressive advancements in MLLMs, a question remains: How far are current MLLMs from achieving human-level planning? To shed light on this question, we introduce EgoPlan-Bench, a comprehensive benchmark to evaluate the planning abilities of MLLMs in real-world scenarios from an egocentric perspective, mirroring human perception. EgoPlan-Bench emphasizes the evaluation of planning capabilities of MLLMs, featuring realistic tasks, diverse action plans, and intricate visual observations. Our rigorous evaluation of a wide range of MLLMs reveals that EgoPlan-Bench poses significant challenges, highlighting a substantial scope for improvement in MLLMs to achieve human-level task planning. To facilitate this advancement, we further present EgoPlan-IT, a specialized instruction-tuning dataset that effectively enhances model performance on EgoPlan-Bench. We have made all codes, data, and a maintained benchmark leaderboard available to advance future research.
- Abstract(参考訳): 人工知能(AGI)の追求はマルチモーダル大言語モデル(MLLM)によって加速され、多モーダル入力の処理において優れた推論能力、一般化能力、熟練度を示す。
AGIの進化における重要なマイルストーンは、人間レベルの計画の達成、複雑な環境で情報的決定を行う基本的な能力、および幅広い現実世界の問題を解決することである。
MLLMの目覚ましい進歩にもかかわらず、疑問が残る。現在のMLLMは、人間レベルの計画を達成するのにどれくらい時間がかかるのか?
本稿では,現実のシナリオにおけるMLLMの計画能力を評価するための総合的なベンチマークであるEgoPlan-Benchを紹介する。
EgoPlan-Bench氏はMLLMの計画能力の評価を強調し、現実的なタスク、多様なアクション計画、複雑な視覚的観察を特徴としている。
幅広いMLLMを厳格に評価した結果,EgoPlan-Benchは人間レベルのタスクプランニングを実現するためのMLLMの改善のかなりの範囲を浮き彫りにした。
この進歩を容易にするために,EgoPlan-Bench上でのモデル性能を効果的に向上する特別な命令チューニングデータセットであるEgoPlan-ITを提案する。
将来の研究を進めるために、すべてのコード、データ、および維持されたベンチマークのリーダーボードを利用可能にしました。
関連論文リスト
- A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs [102.36953558562436]
視覚言語モデル(VLM)は、エキサイティングな言語モデル(LM)のクラスである。
VLMの未調査能力の1つは、視覚空間計画である。
本研究は,これらのモデルにおける空間計画能力を概ね評価するベンチマークを提案する。
論文 参考訳(メタデータ) (2024-07-02T00:24:01Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - What's the Plan? Evaluating and Developing Planning-Aware Techniques for Language Models [7.216683826556268]
大きな言語モデル(LLM)は、計画機能を必要とするアプリケーションにますます使われています。
我々は,新しいハイブリッド・メソドであるSimPlanを紹介し,その性能を新たな挑戦的な設定で評価する。
論文 参考訳(メタデータ) (2024-02-18T07:42:49Z) - Understanding the planning of LLM agents: A survey [98.82513390811148]
本調査では, LLMをベースとしたエージェント計画の体系的考察を行い, 計画能力の向上を目的とした最近の成果について報告する。
各方向について総合的な分析を行い、研究分野におけるさらなる課題について論じる。
論文 参考訳(メタデータ) (2024-02-05T04:25:24Z) - On the Prospects of Incorporating Large Language Models (LLMs) in
Automated Planning and Scheduling (APS) [23.024862968785147]
本稿では, LLMのユニークな応用に基づく8つのカテゴリを, 計画問題の諸側面に対処するために検討する。
我々のレビューから得られた重要な洞察は、LLMの真の可能性は、従来のシンボリックプランナーと統合されたときに広がります。
論文 参考訳(メタデータ) (2024-01-04T19:22:09Z) - Look Before You Leap: Unveiling the Power of GPT-4V in Robotic
Vision-Language Planning [32.045840007623276]
本稿では,ロボットビジョン・ランゲージ計画(ViLa)について紹介する。
ViLaは、知覚データを推論と計画プロセスに直接統合する。
実ロボットとシミュレーション環境の両方で実施した評価は,既存のLCMプランナよりもViLaの方が優れていることを示す。
論文 参考訳(メタデータ) (2023-11-29T17:46:25Z) - Plansformer: Generating Symbolic Plans using Transformers [24.375997526106246]
大規模言語モデル(LLM)は、自然言語処理(NLP)分野を著しく進歩させ、活発な研究対象となっている。
プランフォーマーは計画上の問題に微調整され、知識工学の努力を減らし、正確さと長さの点で良好な行動で計画を生成することができる。
Plansformerの1つの構成では、97%の有効なプランが達成されます。
論文 参考訳(メタデータ) (2022-12-16T19:06:49Z) - PlanBench: An Extensible Benchmark for Evaluating Large Language Models
on Planning and Reasoning about Change [34.93870615625937]
PlanBenchは、自動計画コミュニティで使用されるドメインの種類に基づいたベンチマークスイートである。
PlanBenchはタスクドメインと特定の計画機能の両方に十分な多様性を提供します。
論文 参考訳(メタデータ) (2022-06-21T16:15:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。