Improving the Robustness of 3D Human Pose Estimation: A Benchmark and Learning from Noisy Input
- URL: http://arxiv.org/abs/2312.06797v2
- Date: Tue, 16 Apr 2024 03:10:34 GMT
- Title: Improving the Robustness of 3D Human Pose Estimation: A Benchmark and Learning from Noisy Input
- Authors: Trung-Hieu Hoang, Mona Zehni, Huy Phan, Duc Minh Vo, Minh N. Do,
- Abstract summary: In this work, we focus on the robustness of 2D-to-3D pose lifters.
We observe the poor generalization of state-of-the-art 3D pose lifters in the presence of corruption.
We introduce Temporal Additive Gaussian Noise (TAGN) as a simple yet effective 2D input pose data augmentation.
To incorporate the confidence scores output by the 2D pose detectors, we design a confidence-aware convolution (CA-Conv) block.
- Score: 23.505846631252993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the promising performance of current 3D human pose estimation techniques, understanding and enhancing their generalization on challenging in-the-wild videos remain an open problem. In this work, we focus on the robustness of 2D-to-3D pose lifters. To this end, we develop two benchmark datasets, namely Human3.6M-C and HumanEva-I-C, to examine the robustness of video-based 3D pose lifters to a wide range of common video corruptions including temporary occlusion, motion blur, and pixel-level noise. We observe the poor generalization of state-of-the-art 3D pose lifters in the presence of corruption and establish two techniques to tackle this issue. First, we introduce Temporal Additive Gaussian Noise (TAGN) as a simple yet effective 2D input pose data augmentation. Additionally, to incorporate the confidence scores output by the 2D pose detectors, we design a confidence-aware convolution (CA-Conv) block. Extensively tested on corrupted videos, the proposed strategies consistently boost the robustness of 3D pose lifters and serve as new baselines for future research.
Related papers
- HiPART: Hierarchical Pose AutoRegressive Transformer for Occluded 3D Human Pose Estimation [61.32714172038278]
We propose a novel two-stage generative densification method, named Hierarchical Pose AutoRegressive Transformer (HiPART), to generate 2D dense poses from the original sparse 2D pose.
Specifically, we first develop a multi-scale skeleton tokenization module to quantize the highly dense 2D pose into hierarchical tokens and propose a Skeleton-aware Alignment to strengthen token connections.
With generated hierarchical poses as inputs for 2D-to-3D lifting, the proposed method shows strong robustness in occluded scenarios and achieves state-of-the-art performance on the single-frame-based 3D
arXiv Detail & Related papers (2025-03-30T06:15:36Z) - LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors [107.83398512719981]
Single-image 3D reconstruction remains a fundamental challenge in computer vision.
Recent advances in Latent Video Diffusion Models offer promising 3D priors learned from large-scale video data.
We propose LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency.
arXiv Detail & Related papers (2024-12-12T18:58:42Z) - MPL: Lifting 3D Human Pose from Multi-view 2D Poses [75.26416079541723]
We propose combining 2D pose estimation, for which large and rich training datasets exist, and 2D-to-3D pose lifting, using a transformer-based network.
Our experiments demonstrate decreases up to 45% in MPJPE errors compared to the 3D pose obtained by triangulating the 2D poses.
arXiv Detail & Related papers (2024-08-20T12:55:14Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - CameraPose: Weakly-Supervised Monocular 3D Human Pose Estimation by
Leveraging In-the-wild 2D Annotations [25.05308239278207]
We present CameraPose, a weakly-supervised framework for 3D human pose estimation from a single image.
By adding a camera parameter branch, any in-the-wild 2D annotations can be fed into our pipeline to boost the training diversity.
We also introduce a refinement network module with confidence-guided loss to further improve the quality of noisy 2D keypoints extracted by 2D pose estimators.
arXiv Detail & Related papers (2023-01-08T05:07:41Z) - DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion
Probabilistic Model [25.223801390996435]
This paper focuses on reconstructing a 3D pose from a single 2D keypoint detection.
We build a novel diffusion-based framework to effectively sample diverse 3D poses from an off-the-shelf 2D detector.
We evaluate our method on the widely adopted Human3.6M and HumanEva-I datasets.
arXiv Detail & Related papers (2022-12-06T07:22:20Z) - Towards Hard-pose Virtual Try-on via 3D-aware Global Correspondence
Learning [70.75369367311897]
3D-aware global correspondences are reliable flows that jointly encode global semantic correlations, local deformations, and geometric priors of 3D human bodies.
An adversarial generator takes the garment warped by the 3D-aware flow, and the image of the target person as inputs, to synthesize the photo-realistic try-on result.
arXiv Detail & Related papers (2022-11-25T12:16:21Z) - Uplift and Upsample: Efficient 3D Human Pose Estimation with Uplifting
Transformers [28.586258731448687]
We present a Transformer-based pose uplifting scheme that can operate on temporally sparse 2D pose sequences.
We show how masked token modeling can be utilized for temporal upsampling within Transformer blocks.
We evaluate our method on two popular benchmark datasets: Human3.6M and MPI-INF-3DHP.
arXiv Detail & Related papers (2022-10-12T12:00:56Z) - PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and
Hallucination under Self-supervision [102.48681650013698]
Existing self-supervised 3D human pose estimation schemes have largely relied on weak supervisions to guide the learning.
We propose a novel self-supervised approach that allows us to explicitly generate 2D-3D pose pairs for augmenting supervision.
This is made possible via introducing a reinforcement-learning-based imitator, which is learned jointly with a pose estimator alongside a pose hallucinator.
arXiv Detail & Related papers (2022-03-29T14:45:53Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
We propose a novel Pose Orientation Net (PONet) that is able to robustly estimate 3D pose by learning orientations only.
PONet estimates the 3D orientation of these limbs by taking advantage of the local image evidence to recover the 3D pose.
We evaluate our method on multiple datasets, including Human3.6M, MPII, MPI-INF-3DHP, and 3DPW.
arXiv Detail & Related papers (2021-12-21T12:48:48Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.