Inverse Deep Learning Ray Tracing for Heliostat Surface Prediction
- URL: http://arxiv.org/abs/2408.10802v1
- Date: Tue, 20 Aug 2024 12:51:35 GMT
- Title: Inverse Deep Learning Ray Tracing for Heliostat Surface Prediction
- Authors: Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal, Daniel Maldonado Quinto,
- Abstract summary: We introduce inverse Deep Learning Ray Tracing (iDLR) to predict heliostat surfaces based solely on target images obtained during heliostat calibration.
Our simulation-based investigation demonstrates that sufficient information regarding the heliostat surface is retained in the flux density distribution of a single heliostat.
Our findings reveal that iDLR has significant potential to enhance CSP plant operations, potentially increasing the overall efficiency and energy output of the power plants.
- Score: 3.9888918233632746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concentrating Solar Power (CSP) plants play a crucial role in the global transition towards sustainable energy. A key factor in ensuring the safe and efficient operation of CSP plants is the distribution of concentrated flux density on the receiver. However, the non-ideal flux density generated by individual heliostats can undermine the safety and efficiency of the power plant. The flux density from each heliostat is influenced by its precise surface profile, which includes factors such as canting and mirror errors. Accurately measuring these surface profiles for a large number of heliostats in operation is a formidable challenge. Consequently, control systems often rely on the assumption of ideal surface conditions, which compromises both safety and operational efficiency. In this study, we introduce inverse Deep Learning Ray Tracing (iDLR), an innovative method designed to predict heliostat surfaces based solely on target images obtained during heliostat calibration. Our simulation-based investigation demonstrates that sufficient information regarding the heliostat surface is retained in the flux density distribution of a single heliostat, enabling deep learning models to accurately predict the underlying surface with deflectometry-like precision for the majority of heliostats. Additionally, we assess the limitations of this method, particularly in relation to surface accuracy and resultant flux density predictions. Furthermore, we are presenting a new comprehensive heliostat model using Non-Uniform Rational B-Spline (NURBS) that has the potential to become the new State of the Art for heliostat surface parameterization. Our findings reveal that iDLR has significant potential to enhance CSP plant operations, potentially increasing the overall efficiency and energy output of the power plants.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - An Atmospheric Correction Integrated LULC Segmentation Model for High-Resolution Satellite Imagery [0.0]
This study employs look-up-table-based radiative transfer simulations to estimate the atmospheric path reflectance and transmittance.
The corrected surface reflectance data were subsequently used in supervised and semi-supervised segmentation models.
arXiv Detail & Related papers (2024-09-09T10:47:39Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Solar synthetic imaging: Introducing denoising diffusion probabilistic models on SDO/AIA data [0.0]
This study proposes using generative deep learning models, specifically a Denoising Diffusion Probabilistic Model (DDPM), to create synthetic images of solar phenomena.
By employing a dataset from the AIA instrument aboard the SDO spacecraft, we aim to address the data scarcity issue.
The DDPM's performance is evaluated using cluster metrics, Frechet Inception Distance (FID), and F1-score, showcasing promising results in generating realistic solar imagery.
arXiv Detail & Related papers (2024-04-03T08:18:45Z) - Forecasting SEP Events During Solar Cycles 23 and 24 Using Interpretable
Machine Learning [38.321248253111776]
We employ a suite of machine learning strategies to evaluate the predictive potential of a new data product for a forecast of post-solar flare SEP events.
Despite the augmented volume of data, the prediction accuracy reaches 0.7 +- 0.1, which aligns with but does not exceed these published benchmarks.
arXiv Detail & Related papers (2024-03-04T23:12:17Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - High-Cadence Thermospheric Density Estimation enabled by Machine
Learning on Solar Imagery [0.14061979259370275]
We incorporate NASA's Solar Dynamics Observatory (SDO) extreme ultraviolet (EUV) spectral images into a neural thermospheric density model.
We demonstrate that EUV imagery can enable predictions with much higher temporal resolution and replace ground-based proxies.
arXiv Detail & Related papers (2023-11-12T23:39:21Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
We report daily prediction of solar energy by exploiting the strength of machine learning techniques.
Forecast models of base line regressors including linear, ridge, lasso, decision tree, random forest and artificial neural networks have been implemented.
It has been observed that improved accuracy is achieved through random forest and ridge regressor for both grid sizes.
arXiv Detail & Related papers (2020-10-25T17:56:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.