論文の概要: Pain Analysis using Adaptive Hierarchical Spatiotemporal Dynamic Imaging
- arxiv url: http://arxiv.org/abs/2312.06920v1
- Date: Tue, 12 Dec 2023 01:23:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 17:50:00.182268
- Title: Pain Analysis using Adaptive Hierarchical Spatiotemporal Dynamic Imaging
- Title(参考訳): Adaptive Hierarchical Spatiotemporal Dynamic Imaging を用いた痛解析
- Authors: Issam Serraoui, Eric Granger, Abdenour Hadid, Abdelmalik Taleb-Ahmed
- Abstract要約: 本稿では,適応時間動画像(Adaptive temporal Dynamic Image, AHDI)技術を紹介する。
AHDIは、顔ビデオの深い変化を特異なRGB画像にエンコードし、ビデオ表現のためのより単純な2Dモデルを実現する。
この枠組み内では、一般化された顔表現を導出するために残差ネットワークを用いる。
これらの表現は、痛みの強さを推定し、本物の痛み表現とシミュレートされた痛み表現を区別する2つのタスクに最適化される。
- 参考スコア(独自算出の注目度): 16.146223377936035
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic pain intensity estimation plays a pivotal role in healthcare and
medical fields. While many methods have been developed to gauge human pain
using behavioral or physiological indicators, facial expressions have emerged
as a prominent tool for this purpose. Nevertheless, the dependence on labeled
data for these techniques often renders them expensive and time-consuming. To
tackle this, we introduce the Adaptive Hierarchical Spatio-temporal Dynamic
Image (AHDI) technique. AHDI encodes spatiotemporal changes in facial videos
into a singular RGB image, permitting the application of simpler 2D deep models
for video representation. Within this framework, we employ a residual network
to derive generalized facial representations. These representations are
optimized for two tasks: estimating pain intensity and differentiating between
genuine and simulated pain expressions. For the former, a regression model is
trained using the extracted representations, while for the latter, a binary
classifier identifies genuine versus feigned pain displays. Testing our method
on two widely-used pain datasets, we observed encouraging results for both
tasks. On the UNBC database, we achieved an MSE of 0.27 outperforming the SOTA
which had an MSE of 0.40. On the BioVid dataset, our model achieved an accuracy
of 89.76%, which is an improvement of 5.37% over the SOTA accuracy. Most
notably, for distinguishing genuine from simulated pain, our accuracy stands at
94.03%, marking a substantial improvement of 8.98%. Our methodology not only
minimizes the need for extensive labeled data but also augments the precision
of pain evaluations, facilitating superior pain management.
- Abstract(参考訳): 自動痛み強度推定は、医療や医療分野で重要な役割を担っている。
行動指標や生理指標を用いて人体の痛みを計測する多くの方法が開発されているが、表情はこの目的のために顕著な道具として現れている。
それでも、ラベル付きデータへの依存は高価で時間を要することが多い。
そこで本研究では,適応階層時空間動画像(AHDI)技術を紹介する。
AHDIは、顔ビデオの時空間変化を特異なRGB画像にエンコードし、より単純な2Dディープモデルをビデオ表現に適用することができる。
この枠組み内では、一般化された顔表現を導出するために残差ネットワークを用いる。
これらの表現は、痛みの強さを推定し、本物の痛み表現とシミュレートされた痛み表現を区別する2つのタスクに最適化される。
前者の場合、回帰モデルを抽出した表現を用いて訓練し、後者の場合、バイナリ分類器は真と偽の痛みの表示を識別する。
広く使用されている2つの痛みデータセットでこの方法をテストすることで、両方のタスクに奨励的な結果が得られた。
unbc のデータベースでは,mse が 0.40 の sota を上回る 0.27 の mse を達成した。
biovidデータセットでは,soma精度よりも5.37%向上した89.76%の精度を達成した。
特に、本物の痛みとシミュレートされた痛みを区別するために、我々の精度は94.03%であり、実質的な8.98%の改善を示している。
本手法は,広範囲なラベル付きデータの必要性を最小限に抑えるだけでなく,痛み評価の精度を高め,より優れた痛み管理を容易にする。
関連論文リスト
- Automated facial recognition system using deep learning for pain
assessment in adults with cerebral palsy [0.5242869847419834]
既存の対策は、介護者による直接の観察に依存し、感度と特異性に欠ける。
10のニューラルネットワークが3つの痛み画像データベースでトレーニングされた。
InceptionV3はCP-PAINデータセット上で有望なパフォーマンスを示した。
論文 参考訳(メタデータ) (2024-01-22T17:55:16Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in
Brain Images [59.85702949046042]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
本手法が正常なサンプルに適用された場合,入力画像は大幅な修正を伴わずに再構成されることを確認した。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - Unbiased Pain Assessment through Wearables and EHR Data: Multi-attribute
Fairness Loss-based CNN Approach [3.799109312082668]
本稿では,MAFL(Multi-Atribute Fairness Loss)に基づくCNNモデルを提案する。
提案手法と既存の緩和手順を比較し, 実装されたモデルが最先端の手法と対照的に良好に機能することを明らかにする。
論文 参考訳(メタデータ) (2023-07-03T09:21:36Z) - Transformer Encoder with Multiscale Deep Learning for Pain
Classification Using Physiological Signals [0.0]
痛みは主観的な感覚駆動体験である。
痛みの強さを測定する伝統的な技術は偏見に影響を受けやすく、場合によっては信頼できない。
そこで我々は,生理的シグナルを入力として,痛み強度を分類する新しいトランスフォーマーエンコーダディープラーニングフレームワークPainAttnNetを開発した。
論文 参考訳(メタデータ) (2023-03-13T04:21:33Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
慢性的な痛みを持つ人は、特定の身体の動きを無意識に適応させ、怪我や追加の痛みから身を守る。
この相関関係を分析するための専用のベンチマークデータベースが存在しないため、日々の行動に影響を及ぼす可能性のある特定の状況の1つを検討した。
我々は、複数のオートエンコーダを組み込んだゲートリカレントユニット(GRU)と疎結合なリカレントニューラルネットワーク(s-RNN)のアンサンブルを提案した。
本手法は,痛みレベルと痛み関連行動の両方の分類において,最先端のアプローチよりも優れていることを示すいくつかの実験を行った。
論文 参考訳(メタデータ) (2022-12-20T12:56:28Z) - Pain Detection in Masked Faces during Procedural Sedation [0.0]
鎮静術を施行した患者のケアの質には痛みのモニタリングが不可欠である。
これまでの研究では、隠蔽された顔の痛みを検知するコンピュータビジョン法が実現可能であることが示されている。
本研究は, 介入放射線学部門において, 手術中の14例の顔から映像データを収集した。
論文 参考訳(メタデータ) (2022-11-12T15:55:33Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
本稿では,Intelligent Sight and Sound (ISS) 臨床試験の一環として収集された,最初の慢性ガン痛データセットを紹介する。
これまで収集されたデータは29の患者、509のスマートフォンビデオ、189,999のフレーム、そして自己報告された感情と活動の痛みのスコアから成っている。
静的画像とマルチモーダルデータを用いて、自己報告された痛みレベルを予測する。
論文 参考訳(メタデータ) (2022-04-07T22:14:37Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Non-contact Pain Recognition from Video Sequences with Remote
Physiological Measurements Prediction [53.03469655641418]
痛み認識のための非接触方式で外観変化と生理的手がかりの両方を符号化する新しいマルチタスク学習フレームワークを提案する。
我々は、一般に利用可能な痛みデータベース上で、非接触痛認識の最先端性能を確立する。
論文 参考訳(メタデータ) (2021-05-18T20:47:45Z) - Pain Intensity Estimation from Mobile Video Using 2D and 3D Facial
Keypoints [1.6402428190800593]
術後痛の管理は外科的治療の成功に不可欠である。
痛み管理の課題の1つは、患者の痛みレベルを正確に評価することである。
本稿では,術後患者の2Dおよび3D顔のキーポイントを分析し,痛み強度を推定するアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-17T00:18:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。